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1. Introduction

Screw tasks are nowadays commonly automated in various 
industrial branches with the help of robotic systems [1]. In most 
cases, the automation of screwing processes take place in 
robotic cells characterized by a strictly controlled environment 
and, more recently, in collaborative robot workstations [2, 3], 
which are used mainly for low-torque and non-heavy-duty 
fastening tasks. Typically, the implementation of Human-Robot 
Collaboration requires a strictly controlled workspace to 
operate reliably, where the position of the tool and workpieces 

are well defined. Such robot workspaces are referred to as static 
workspaces. 

On the other hand, the implementation of robotic screw 
solutions in workspaces that are not originally conceived for 
automation, such as manual production lines, remains a topic 
that is not yet widely explored. The implementation of robotic 
solutions in such environments is characterized by the presence 
of disturbances that can be caused by human presence or other 
sources, such as the design and construction tolerances of the 
conveyor system in the assembly line. As a result, the position 
of the workpiece is not constant and can vary in each screwing 
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operation [4]. Such workspaces are also known as dynamic 
workspaces.  

Traditional robotic cells rely on position control to perform 
automated screw tasks, which is unattainable if the workpiece 
position is not fixed and can vary.  There are other control 
strategies that can compensate for the deviation of the 
workpiece position. In principle, the contact between screw 
head and nut-runner can be also seen as a peg-in-hole operation. 
Numerous peg-in-hole assembly strategies aim to recognize the 
contact state by observing wrench signals or robot pose so that 
the robot can react accordingly [5–7].

It is also possible to implement a camera system and use 
computer vision to determine the position deviation of the 
workpiece and thus adjust the robot pose [8, 9]. Nonetheless, 
computer vision techniques like visual servoing cannot react to 
any position deviation if the camera angle has been obstructed. 
Furthermore, the position correction from camera systems has 
innate inaccuracy [10], whereby screw tasks can still fail even 
after the pose correction.

This paper proposes a screw interlock recognition method 
that can be implemented for screwing tasks in highly dynamic 
workspaces. The method, based on logistic regression in 
combination with impedance control, aims to correctly position 
the nut-runner on the workpiece despite its position deviation 
and identify when the nut-runner has correctly interlocked with 
the screw head. This approach is a follow-up of the automated 
screwing strategy presented in a previous work [11], where the 
original screw interlock recognition method based on a 
threshold value has been replaced by the proposed method 
based on logistic regression. 

2. Robotic Screwing Strategy based on Impedance Control 

The idea of using active compliance based on impedance 
control for automated screwing applications is not new. Some 
robot manufactures have already integrated robotic screwing 
skills in their portfolio. However, most of these solutions are 
implemented in applications where the position of the 
workpiece does not vary and the screwing procedure is 
performed without external disturbances. Research work has 
already demonstrated the advantages of using impedance 
control to counteract any position variation along the screw 
axis [12, 13]. However, its ability to compensate for position 
variation on the plane perpendicular to the screw axis is very 
limited and the use of a threshold value to detect the contact 
between tool and screw makes them unappropriated for a 
dynamic environment.  In a paper from 2020 [14] the author 
shows a method of automated unfastening using a cobot and 
impedance control combined with a spiral movement to align 
the nutrunner with the hole.

The proposed screwing strategy was conceived for semi-
automated assembly processes where the screws are first 
manually placed in the workpiece and only the tightening 
process has to be automated. The three phases of the automated 
screwing strategy: Screw Approach, Screw Interlock as well as
Screwing and Tightening are presented in the following 
chapters.

2.1. Screw Approach

In a typical static workspace, the position of the screw is always 
known and the robot can simply approach it. The same method 
cannot be implemented in a dynamic workspace due to the 
variation of the workpiece position. Instead, the robot can only 
bring the nut runner close to the position of the screw and a 
search procedure would be necessary in order to approach the 
screw and place the nut runner correctly on the screw head.

The search procedure consists of performing a spiral 
movement of the robot TCP to approach the screw head. Such 
spiral movement is also commonly implemented in peg-in hole 
assembly operations where impedance control is used. The 
spiral movement has three important parameters; spiral radius, 
axial and radial velocity. Under the correct parameters, the 
spiral movement can compensate for position deviation of the 
workpiece on the plane perpendicular to the screw axis (Figure 
1). However, the spiral movement method can only 
compensate for position deviation of the screw if it is still 
located within the radius of the spiral movement. 

The implementation of impedance control on the screw axis 
is proposed to compensate for position deviations of the 
workpiece along this axis. While impedance control is active, 
the robot behaves compliant and moves along the screw axis 
until a certain target force is reached. 

In summary, the search procedure is a combination of 
impedance control and spiral movement along the screw axis. 

2.2. Screw Interlock

Eventually, the nut-runner comes into contact and interlocks 
with the screw. This is the critical phase of the screw task; the 
robot must be able to identify when the screw interlock occurs 
in order to stop the spiral movement. Stopping the spiral 
movement too early may prevent the screw interlock and 
ultimately failing the screw task. On the other hand, stopping it 
too late will leave the robot moving the nut-runner while 
interlocked with the screw, potentially damaging the robot, the 
nut-runner, and the workpiece.  

Figure 1 Search procedure: the robotic active compliance mode render a 
mass, spring (Kt), damper (Bt) system that execute a linear movement (vs) in 
the screw direction (Ytcp). At the same time, a circular movement (vt) in the 
XZ plane is performed with the help of teached points (P1- P4). The screw is 

represented as the environment with a specific stiffness (Ke)
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2.3. Screwing and Tightening

After the screw interlock occurs and the spiral movement 
stops, the robot proceeds with the screwing process. During the 
screwing process, the robot further utilizes impedance control 
along the screw axis to follow the screw movement towards the 
workpiece. The screwing process finishes with the fastening of 
the screw using standard built- in torque and angle control 
functions from the industrial nut-runner controller.

The work presented here focused only on the “screw 
interlock” phase. The proposed screw interlock recognition 
method implements a learning model that observes the force 
progression to identify the screw interlock, which will be 
discussed in detail in the following chapter. 

3. Methodology of Screw Interlock Recognition

3.1. Logistic Regression

Logistic regression is a supervised learning algorithm that 
solves binary classification problems [15]. It calculates the 
probability of one out of two events taking place based on the 
input of independent variables. A logistic regression model 
utilizes the following linear function f(x) as its classifier, 
whereby b0, b1, …, bn is the weight of the classifier and x1, x2, 
…, xn are the independent variables. 

The probability p(x) whether a set of independent variables 
belongs to one of the two classes is calculated using the 
sigmoid function of the linear classifier.

The model is trained using labeled data from the two 
possible classes. During the training phase, the model utilizes 
a solver to determine the best weights for the classifier so that 
the model prediction is as close as possible to the label of the 
training data. In this paper, the solver liblinear [16] is utilized 
to optimize the weights of the classifier. After the model is 
trained and a set of classifier weights is derived, the model can 
make predictions regarding new independent variables. 

The proposed screw interlock recognition method utilizes a 
logistic regression model to predict one of two outcomes; 
whether or not the nut-runner has come into contact and 
interlocked with the screw. During the screw approach, the 
robot continuously communicates with the learning model. In 
each time step, the robot collects the force measurements on 
the x, y, and z axes within the last second into three vectors 
(Fx_1s, Fy_1s, and Fz_1s) and inputs them into three separate 
logistic regression models as the independent variables. The 
length of these vectors corresponds to how many instances of 
force values are measured within one second, i.e. the sampling 
rate. 

The learning models on each axis will then calculate the 
probability that the screw interlock has occurred within these 
force measurements. The probability values on each axis, 

which ranges between 0 and 1, are then added together. In case 
of a successful screw interlock, the contact force on the screw 
axis (y axis) always rises, since the robot tries to achieve the 
target force after it comes in contact with the screw. On the 
other hand, depending on how smooth the screw interlock is, 
the contact forces on the other two axes may not experience a 
significant change. In other words, an increase of contact force 
on the screw axis is a strong indicator that a screw interlock has 
occurred. Therefore, the probability on the screw axes is given 
more weight than the other two axes. If the sum of the 
probabilities on all axes exceeds a certain threshold will stop 
the spiral movement and proceed with the screwing process
(Figure 2). Due to the doubled weight on the screw axis, the 
value of the sum ranges from 0 to 4.

Typically, in a binary classification problem, the probability 
threshold is set to 50%. To avoid stopping the spiral movement 
prematurely, the model must be rather certain that the screw 

interlock has occurred before it makes a prediction. Therefore, 
the probability threshold is increased to 75%. Correspondingly, 
the sum value described previously must exceed a threshold 
value of 3.

In this contribution, logistic regression is implemented as 
the classification algorithm due to its simplicity and low 
computational cost, which allows a fast calculation in each time 
step.  Naturally, another method can also be utilized in future 
works to approach this classification problem.

3.2. Failsafe method

As mentioned previously, the capability of the spiral 
movement to compensate for position deviation is limited. The 
nut-runner will still miss the workpiece if it deviates too much 
from its supposed location. If the spiral movement successfully 
finds the screw, the tip of the nut-runner bit will interlock with 
the drive of the screw. On the other hand, if the spiral 
movement is unsuccessful, the nut-runner bit will collide with 
the side of the screw head. In case of such a collision the contact 
force on all three axes will rise abruptly, especially on the x and 
z axes, by a significant value. In this instance, the spiral 
movement shall be stopped immediately to avoid straining the 
robot and the nut-runner any further. 

Figure 2 Screw Interlock Detection based on Logistic Regression Model
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For this purpose, the maximum contact force on each axis 
within the last second is observed. If the sum of these forces 
exceeds a certain threshold at any point during the screw 
approach, the robot will stop the spiral movement and move 
back to the starting position. 

4. Experiments 

4.1. Training the model

Since logistic regression is a supervised learning model, it 
needs to be trained with labeled data. For the work presented 
here, the parameters from Figure 1 of the screw method have 
been kept constant and only different deviations in the position 
of the tool relative to the screw have been used to train the 
model. If the screw axis is collinear with the tool axis, i.e. there 
is no position deviation, the axis of the spiral movement will 
coincide with the screw. From each screw task, different 
portions of the force profile, which represent the screw 
approach or the screw interlock, are selected and labeled to 
train the learning model. The model has been trained using data 
from 20 screw tasks considering position deviations of 2 mm 
and 4 mm as well as without deviation.  

After the model has been trained, its accuracy is tested using 
new data that was not used for the training process. When the 
accuracy is sufficient (in this case above 80%), the model is 
implemented in the actual test bed for validation. The 
experiment aims to observe the accuracy of the model in 
identifying successful screw interlock under different 
uncertainties (different position deviations). Furthermore, the 
experiment also tests how reliably the failsafe measure can 
detect a failed screw interlock. A screw task is considered 
successful under two conditions; the spiral movement must 
first hit the screw head and the learning model must stop the 
spiral movement correctly. Therefore, in each test there are four 
possible outcomes:

• Case 1: The tool hits the screw head and the model 
stops the spiral movement when the screw interlock 
has taken place (successful interlock task).

• Case 2: The tool hit the screw head but the model 
stops the spiral movement incorrectly (unsuccessful 
interlock task).

• Case 3: The spiral movement misses the screw, and 
the failsafe method stops the spiral movement 
correctly (successful failsafe task).

• Case 4: The spiral movement misses the screw, and 
the failsafe method stops the spiral movement 
incorrectly (unsuccessful failsafe task). 

4.2. Test bed

The equipment for the training, testing and final 
implementation consists of the following (Figure 3):
• Collaborative robot arm: Universal Robot UR16e 
• Nut-runner: Cleco EC 50EAN89JA4 with angular head. 

Rotation speed: 125 1/s and tightening torque: 10 Nm
• Nut-runner bit: T40. 
• Screw: Torx M8 x 30 mm

• Workpiece: metal plate with holes for M8 Screw
• Workpiece holder: Use of springs to simulate a stiffness in 

the environment of 3.69 N/mm 
The logistic regression model is implemented using a 

python script that is run on an external computer. The 
acquisition of force measurement between the external
computer and the robot controller is realized using a socket 
connection with an optimized sampling rate of 50 Hz, 
providing no data loss within the socket connection. The 
impedance control has been implemented using the inherent 
active compliance mode of the UR16e controller, defined as 
“force mode”. The parameters of the program and force mode 
for the automated screwing strategy are the following:

• Target force of the force mode: 8 N in the direction of the 
scree axis.

• Axial velocity of the spiral movement: 5 mm/s
• Tangential velocity of the spiral movement: 24 mm/s
• Radius of the spiral movement: 5 mm

5. Results

5.1. Force Profile Analysis

This chapter discusses several examples of force profile 
from the experiments. Figure 4 and Figure 5 present force 
profiles from two successful interlock tasks. The fourth plot on 
each figure presents the calculated probability of a screw 
interlock where the yellow line indicates when the probability 
threshold is triggered and the spiral movement is stopped.

Figure 3 Test bed with Cobot UR16e
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In the first example (Figure 4), the nut-runner bit interlocks 
with the screw very smoothly. The contact force on the screw 
axis (Fy) increases very noticeably, while the contact forces on 
the other two axes barely change during the spiral movement. 
As the probability threshold is triggered (indicated by the 
yellow plot), the spiral movement stops while the nut runner bit 
is interlocked with the screwhead, which causes abrupt changes 
to the contact forces. 

Since the force values on the screw axis is given more 
weight in calculating the screw interlock probability pinterlock= 
p(x) + 2p(y) + p(z) (Figure 2), the learning model is still able 
to make the correct prediction. In the second example (Figure 
5), the screw interlock occurred not as smoothly, which results 
in a noticeable change on the x and z axes. In this instance, the 
threshold for the screw interlock probability is triggered with a 
lower contact force on the y axis, compared to the first 
example. Similar to the previous example, the contact forces 
abruptly change after the probability threshold is triggered.

5.2. Validation of the trained Model

Table 1 presents the number of experiments using different 
position deviations in which the contact detection method has
behaved according to one of the cases described in section 4.
Unlike the previous work [11] where a threshold force value 
could not be implemented and it was necessary to implement a 
timer to deactivate the search procedure; the new method
proposed in this work was successfully implemented, 
especially for tolerances smaller than 2mm.

Table 1. Experiment Outcomes.

Deviation Case 1 Case 2 Case 3 Case 4

0 mm 20 0 0 0

2 mm 18 2 0 0

4 mm 13 2 5 0

6 mm 4 1 15 0

As expected, the nut-runner always finds the screw under 0-
2 mm position deviation. For 0 mm deviation, the screw task
has a 100% success rate (i.e. number of experiments that
performed according to Case 1). For 2 mm deviation, the spiral 
movement always finds the screw but there are two occasions
where the logistic regression model makes a wrong prediction 
and stops the spiral movement before the nut-runner interlocks 
with the screw. The success rate of the spiral movement has 
decreased to 75% for 4 mm deviation, since the screw is now 
located further from the spiral movement axis. Furthermore,
there are two instances where the model stops the spiral 
movement too early, resulting in a 65% overall success rate. 
Starting from 4 mm deviations, the spiral movement does not 
always find the screw, resulting in a failed screw task. In such 
instances, the failsafe method always fulfills its objective, 
stopping the robot movement and moving it back to the start 
position. A 6 mm position deviation places the screw just 
outside the spiral movement’s circumference, which 
understandably leads to a significantly lower success rate. In 
summary, out of 80 screw tasks under different position 
deviation, the spiral movement can find the screw 60 times. Out 
of these 60 instances, the spiral movement is stopped by the 
learning model correctly 55 times, resulting in a 91,67% 
prediction accuracy. 

Although the sampling rate of 50 Hz for the acquisition of 
the contact forces has proven to be sufficient to stop the spiral 
motion in time without damaging the hardware. This is an 
aspect that should be further analyzed. A higher sampling rate 
would be beneficial to ensure a faster reaction of the system 
and avoid safety-critical situations. In this contribution, it was 
not possible to use a higher sampling rate without suffering data 
loss. This issue will be considered in future work.

6. Summary

The work presented is a first evaluation of the feasibility of 
the proposed screw interlock recognition method that is based 
on a logistic regression model. The robotic system was able to 
perform screwing tasks under different position deviations of 
the screw. The effectiveness of the proposed method to stop the 
spiral movement in time has been successfully tested and
validated, especially for deviations of 2 mm. While this first 
implementation of the learning model has shown some 
effectiveness, it still has some limitations:
• Although the validation of the logistic model has presented 

a good accuracy, the model has been trained by varying 
only one condition (position deviation). 

• The proposed failsafe method is based on a threshold value 
that has to be estimated by observing several force profiles 
where the spiral movement fails to find the screw.

Figure 4 Experiment 1: Force profile of a successful interlock task
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Future work will consider the variation of further parameters 
of the screwing strategy, such as environmental stiffness, screw 
size, workpiece material, etc., to train the logistic regression 
model and evaluate its robustness. Even though logistic 
regression model is intended for binary classification problems, 
it can be modified for multi-class classification problems by 
utilizing multiple decision layers. The learning model can be 
extended to include an additional state, namely when the spiral 
movement fails to find the screw. This way, the proposed screw 
method can be simplified using a single learning mode that also 
covers failed screw interlock.
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