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Abstract

Conventional robotic screw methods rely on position control and the use of a threshold value, normally a contact force value, to detect the
contact between tool and screw, so the nut-runner can be placed correctly on the workpiece. In the case of a dynamic workspace, the variance
of the workpiece position will likely cause the nut-runner to be positioned incorrectly and will significantly decrease the success rate of the

screw task.

This paper proposes a novel method based on a logistic regression model for flexible Human-Robot-Collaboration (HRC) screw assembly
operations in highly dynamic workspaces. The proposed method is part of a screwing strategy based on impedance control and developed for
HRC applications. The screwing strategy consists of a spiral movement executed by the robot while approaching the workpiece and it is used as
a search procedure to find the screw. The proposed method is used to detect when the tool correctly interlocks with the screw head so the robot
can proceed with the screwing process. The goal is to stop the spiral movement timely when the nut-runner has correctly interlocked with the
screw head to ensure a successful screw task and avoid potential damage to the nut-runner or the workpiece.

The proposed screw interlock recognition method utilizes a logistic regression model to observe the contact forces between tool and screw
head. The learning model is trained using force data collected from experiments and then its feasibility is validated with further testing.
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1. Introduction

Screw tasks are nowadays commonly automated in various
industrial branches with the help of robotic systems [1]. In most
cases, the automation of screwing processes take place in
robotic cells characterized by a strictly controlled environment
and, more recently, in collaborative robot workstations [2, 3],
which are used mainly for low-torque and non-heavy-duty
fastening tasks. Typically, the implementation of Human-Robot
Collaboration requires a strictly controlled workspace to
operate reliably, where the position of the tool and workpieces
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are well defined. Such robot workspaces are referred to as static
workspaces.

On the other hand, the implementation of robotic screw
solutions in workspaces that are not originally conceived for
automation, such as manual production lines, remains a topic
that is not yet widely explored. The implementation of robotic
solutions in such environments is characterized by the presence
of disturbances that can be caused by human presence or other
sources, such as the design and construction tolerances of the
conveyor system in the assembly line. As a result, the position
of the workpiece is not constant and can vary in each screwing
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operation [4]. Such workspaces are also known as dynamic
workspaces.

Traditional robotic cells rely on position control to perform
automated screw tasks, which is unattainable if the workpiece
position is not fixed and can vary. There are other control
strategies that can compensate for the deviation of the
workpiece position. In principle, the contact between screw
head and nut-runner can be also seen as a peg-in-hole operation.
Numerous peg-in-hole assembly strategies aim to recognize the
contact state by observing wrench signals or robot pose so that
the robot can react accordingly [5-7].

It is also possible to implement a camera system and use
computer vision to determine the position deviation of the
workpiece and thus adjust the robot pose [8, 9]. Nonetheless,
computer vision techniques like visual servoing cannot react to
any position deviation if the camera angle has been obstructed.
Furthermore, the position correction from camera systems has
innate inaccuracy [10], whereby screw tasks can still fail even
after the pose correction.

This paper proposes a screw interlock recognition method
that can be implemented for screwing tasks in highly dynamic
workspaces. The method, based on logistic regression in
combination with impedance control, aims to correctly position
the nut-runner on the workpiece despite its position deviation
and identify when the nut-runner has correctly interlocked with
the screw head. This approach is a follow-up of the automated
screwing strategy presented in a previous work [11], where the
original screw interlock recognition method based on a
threshold value has been replaced by the proposed method
based on logistic regression.

2. Robotic Screwing Strategy based on Impedance Control

The idea of using active compliance based on impedance
control for automated screwing applications is not new. Some
robot manufactures have already integrated robotic screwing
skills in their portfolio. However, most of these solutions are
implemented in applications where the position of the
workpiece does not vary and the screwing procedure is
performed without external disturbances. Research work has
already demonstrated the advantages of using impedance
control to counteract any position variation along the screw
axis [12, 13]. However, its ability to compensate for position
variation on the plane perpendicular to the screw axis is very
limited and the use of a threshold value to detect the contact
between tool and screw makes them unappropriated for a
dynamic environment. In a paper from 2020 [14] the author
shows a method of automated unfastening using a cobot and
impedance control combined with a spiral movement to align
the nutrunner with the hole.

The proposed screwing strategy was conceived for semi-
automated assembly processes where the screws are first
manually placed in the workpiece and only the tightening
process has to be automated. The three phases of the automated
screwing strategy: Screw Approach, Screw Interlock as well as
Screwing and Tightening are presented in the following
chapters.

2.1. Screw Approach

In a typical static workspace, the position of the screw is always
known and the robot can simply approach it. The same method
cannot be implemented in a dynamic workspace due to the
variation of the workpiece position. Instead, the robot can only
bring the nut runner close to the position of the screw and a
search procedure would be necessary in order to approach the
screw and place the nut runner correctly on the screw head.

The search procedure consists of performing a spiral
movement of the robot TCP to approach the screw head. Such
spiral movement is also commonly implemented in peg-in hole
assembly operations where impedance control is used. The
spiral movement has three important parameters; spiral radius,
axial and radial velocity. Under the correct parameters, the
spiral movement can compensate for position deviation of the
workpiece on the plane perpendicular to the screw axis (Figure
1). However, the spiral movement method can only
compensate for position deviation of the screw if it is still
located within the radius of the spiral movement.
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Figure 1 Search procedure: the robotic active compliance mode render a
mass, spring (Kt), damper (Bt) system that execute a linear movement (vs) in
the screw direction (Ytcp). At the same time, a circular movement (vt) in the
XZ plane is performed with the help of teached points (P1- P4). The screw is

represented as the environment with a specific stiffness (Ke)

The implementation of impedance control on the screw axis
is proposed to compensate for position deviations of the
workpiece along this axis. While impedance control is active,
the robot behaves compliant and moves along the screw axis
until a certain target force is reached.

In summary, the search procedure is a combination of
impedance control and spiral movement along the screw axis.

2.2. Screw Interlock

Eventually, the nut-runner comes into contact and interlocks
with the screw. This is the critical phase of the screw task; the
robot must be able to identify when the screw interlock occurs
in order to stop the spiral movement. Stopping the spiral
movement too early may prevent the screw interlock and
ultimately failing the screw task. On the other hand, stopping it
too late will leave the robot moving the nut-runner while
interlocked with the screw, potentially damaging the robot, the
nut-runner, and the workpiece.
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2.3. Screwing and Tightening

After the screw interlock occurs and the spiral movement
stops, the robot proceeds with the screwing process. During the
screwing process, the robot further utilizes impedance control
along the screw axis to follow the screw movement towards the
workpiece. The screwing process finishes with the fastening of
the screw using standard built- in torque and angle control
functions from the industrial nut-runner controller.

The work presented here focused only on the “screw
interlock” phase. The proposed screw interlock recognition
method implements a learning model that observes the force
progression to identify the screw interlock, which will be
discussed in detail in the following chapter.

3. Methodology of Screw Interlock Recognition
3.1. Logistic Regression

Logistic regression is a supervised learning algorithm that
solves binary classification problems [15]. It calculates the
probability of one out of two events taking place based on the
input of independent variables. A logistic regression model
utilizes the following linear function f(x) as its classifier,
whereby b0, bl, ..., bn is the weight of the classifier and x, X2,
..., Xn are the independent variables.

f(x) =b0+ b1x1+ b2x2+ ot bnxn
The probability p(x) whether a set of independent variables

belongs to one of the two classes is calculated using the
sigmoid function of the linear classifier.

1
(I+exp(=f(x)))

p(x) =

The model is trained using labeled data from the two
possible classes. During the training phase, the model utilizes
a solver to determine the best weights for the classifier so that
the model prediction is as close as possible to the label of the
training data. In this paper, the solver liblinear [16] is utilized
to optimize the weights of the classifier. After the model is
trained and a set of classifier weights is derived, the model can
make predictions regarding new independent variables.

The proposed screw interlock recognition method utilizes a
logistic regression model to predict one of two outcomes;
whether or not the nut-runner has come into contact and
interlocked with the screw. During the screw approach, the
robot continuously communicates with the learning model. In
each time step, the robot collects the force measurements on
the x, y, and z axes within the last second into three vectors
(Fx_1s, Fy 1s, and Fz_1s) and inputs them into three separate
logistic regression models as the independent variables. The
length of these vectors corresponds to how many instances of
force values are measured within one second, i.e. the sampling
rate.

The learning models on each axis will then calculate the
probability that the screw interlock has occurred within these
force measurements. The probability values on each axis,

which ranges between 0 and 1, are then added together. In case
of a successful screw interlock, the contact force on the screw
axis (y axis) always rises, since the robot tries to achieve the
target force after it comes in contact with the screw. On the
other hand, depending on how smooth the screw interlock is,
the contact forces on the other two axes may not experience a
significant change. In other words, an increase of contact force
on the screw axis is a strong indicator that a screw interlock has
occurred. Therefore, the probability on the screw axes is given
more weight than the other two axes. If the sum of the
probabilities on all axes exceeds a certain threshold will stop
the spiral movement and proceed with the screwing process
(Figure 2). Due to the doubled weight on the screw axis, the
value of the sum ranges from 0 to 4.

Typically, in a binary classification problem, the probability
threshold is set to 50%. To avoid stopping the spiral movement
prematurely, the model must be rather certain that the screw
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Figure 2 Screw Interlock Detection based on Logistic Regression Model

interlock has occurred before it makes a prediction. Therefore,
the probability threshold is increased to 75%. Correspondingly,
the sum value described previously must exceed a threshold
value of 3.

In this contribution, logistic regression is implemented as
the classification algorithm due to its simplicity and low
computational cost, which allows a fast calculation in each time
step. Naturally, another method can also be utilized in future
works to approach this classification problem.

3.2. Failsafe method

As mentioned previously, the capability of the spiral
movement to compensate for position deviation is limited. The
nut-runner will still miss the workpiece if it deviates too much
from its supposed location. If the spiral movement successfully
finds the screw, the tip of the nut-runner bit will interlock with
the drive of the screw. On the other hand, if the spiral
movement is unsuccessful, the nut-runner bit will collide with
the side of the screw head. In case of such a collision the contact
force on all three axes will rise abruptly, especially on the x and
z axes, by a significant value. In this instance, the spiral
movement shall be stopped immediately to avoid straining the
robot and the nut-runner any further.
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For this purpose, the maximum contact force on each axis
within the last second is observed. If the sum of these forces
exceeds a certain threshold at any point during the screw
approach, the robot will stop the spiral movement and move
back to the starting position.

max( Fx 1.:) + max( Fy ]s) + max( Fz ls) > Threshold

4. Experiments
4.1. Training the model

Since logistic regression is a supervised learning model, it
needs to be trained with labeled data. For the work presented
here, the parameters from Figure 1 of the screw method have
been kept constant and only different deviations in the position
of the tool relative to the screw have been used to train the
model. If the screw axis is collinear with the tool axis, i.e. there
is no position deviation, the axis of the spiral movement will
coincide with the screw. From each screw task, different
portions of the force profile, which represent the screw
approach or the screw interlock, are selected and labeled to
train the learning model. The model has been trained using data
from 20 screw tasks considering position deviations of 2 mm
and 4 mm as well as without deviation.

After the model has been trained, its accuracy is tested using
new data that was not used for the training process. When the
accuracy is sufficient (in this case above 80%), the model is
implemented in the actual test bed for validation. The
experiment aims to observe the accuracy of the model in
identifying successful screw interlock under different
uncertainties (different position deviations). Furthermore, the
experiment also tests how reliably the failsafe measure can
detect a failed screw interlock. A screw task is considered
successful under two conditions; the spiral movement must
first hit the screw head and the learning model must stop the
spiral movement correctly. Therefore, in each test there are four
possible outcomes:

e Case 1: The tool hits the screw head and the model
stops the spiral movement when the screw interlock
has taken place (successful interlock task).

e Case 2: The tool hit the screw head but the model
stops the spiral movement incorrectly (unsuccessful
interlock task).

e Case 3: The spiral movement misses the screw, and
the failsafe method stops the spiral movement
correctly (successful failsafe task).

e (Case 4: The spiral movement misses the screw, and
the failsafe method stops the spiral movement
incorrectly (unsuccessful failsafe task).

4.2. Test bed

The equipment for the training, testing and final
implementation consists of the following (Figure 3):
e Collaborative robot arm: Universal Robot UR16e
e Nut-runner: Cleco EC S0EAN89JA4 with angular head.
Rotation speed: 125 1/s and tightening torque: 10 Nm
e Nut-runner bit: T40.
Screw: Torx M8 x 30 mm

o Workpiece: metal plate with holes for M8 Screw
o Workpiece holder: Use of springs to simulate a stiffness in

the environment of 3.69 N/mm

The logistic regression model is implemented using a
python script that is run on an external computer. The
acquisition of force measurement between the external
computer and the robot controller is realized using a socket
connection with an optimized sampling rate of 50 Hz,
providing no data loss within the socket connection. The
impedance control has been implemented using the inherent
active compliance mode of the UR16e controller, defined as
“force mode”. The parameters of the program and force mode
for the automated screwing strategy are the following:

e Target force of the force mode: 8 N in the direction of the
scree axis.

o Axial velocity of the spiral movement: 5 mm/s
Tangential velocity of the spiral movement: 24 mm/s
Radius of the spiral movement: 5 mm

Workpiece holder
Tool T40

Cobot UR16e

A-
- b

’\'

: -

v
Screw Torx
B M8x30mm

Figure 3 Test bed with Cobot UR16e

5. Results
5.1. Force Profile Analysis

This chapter discusses several examples of force profile
from the experiments. Figure 4 and Figure 5 present force
profiles from two successful interlock tasks. The fourth plot on
each figure presents the calculated probability of a screw
interlock where the yellow line indicates when the probability
threshold is triggered and the spiral movement is stopped.
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In the first example (Figure 4), the nut-runner bit interlocks
with the screw very smoothly. The contact force on the screw
axis (Fy) increases very noticeably, while the contact forces on
the other two axes barely change during the spiral movement.
As the probability threshold is triggered (indicated by the
yellow plot), the spiral movement stops while the nut runner bit
is interlocked with the screwhead, which causes abrupt changes
to the contact forces.
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Figure 4 Experiment 1: Force profile of a successful interlock task

Since the force values on the screw axis is given more
weight in calculating the screw interlock probability pintertock=
p(x) + 2p(y) + p(z) (Figure 2), the learning model is still able
to make the correct prediction. In the second example (Figure
5), the screw interlock occurred not as smoothly, which results
in a noticeable change on the x and z axes. In this instance, the
threshold for the screw interlock probability is triggered with a
lower contact force on the y axis, compared to the first
example. Similar to the previous example, the contact forces
abruptly change after the probability threshold is triggered.

5.2. Validation of the trained Model

Table 1 presents the number of experiments using different
position deviations in which the contact detection method has
behaved according to one of the cases described in section 4.
Unlike the previous work [11] where a threshold force value
could not be implemented and it was necessary to implement a
timer to deactivate the search procedure; the new method
proposed in this work was successfully implemented,
especially for tolerances smaller than 2mm.

Table 1. Experiment Outcomes.

Deviation Case 1 Case 2 Case 3 Case 4
0 mm 20 0 0 0
2 mm 18 2 0 0
4 mm 13 2 5 0
6 mm 4 1 15 0

As expected, the nut-runner always finds the screw under 0-
2 mm position deviation. For 0 mm deviation, the screw task
has a 100% success rate (i.e. number of experiments that
performed according to Case 1). For 2 mm deviation, the spiral
movement always finds the screw but there are two occasions
where the logistic regression model makes a wrong prediction
and stops the spiral movement before the nut-runner interlocks
with the screw. The success rate of the spiral movement has
decreased to 75% for 4 mm deviation, since the screw is now
located further from the spiral movement axis. Furthermore,
there are two instances where the model stops the spiral
movement too early, resulting in a 65% overall success rate.
Starting from 4 mm deviations, the spiral movement does not
always find the screw, resulting in a failed screw task. In such
instances, the failsafe method always fulfills its objective,
stopping the robot movement and moving it back to the start
position. A 6 mm position deviation places the screw just
outside the spiral movement’s circumference, which
understandably leads to a significantly lower success rate. In
summary, out of 80 screw tasks under different position
deviation, the spiral movement can find the screw 60 times. Out
of these 60 instances, the spiral movement is stopped by the
learning model correctly 55 times, resulting in a 91,67%
prediction accuracy.

Although the sampling rate of 50 Hz for the acquisition of
the contact forces has proven to be sufficient to stop the spiral
motion in time without damaging the hardware. This is an
aspect that should be further analyzed. A higher sampling rate
would be beneficial to ensure a faster reaction of the system
and avoid safety-critical situations. In this contribution, it was
not possible to use a higher sampling rate without suffering data
loss. This issue will be considered in future work.

6. Summary

The work presented is a first evaluation of the feasibility of
the proposed screw interlock recognition method that is based
on a logistic regression model. The robotic system was able to
perform screwing tasks under different position deviations of
the screw. The effectiveness of the proposed method to stop the
spiral movement in time has been successfully tested and
validated, especially for deviations of 2 mm. While this first
implementation of the learning model has shown some
effectiveness, it still has some limitations:

o Although the validation of the logistic model has presented
a good accuracy, the model has been trained by varying
only one condition (position deviation).

e The proposed failsafe method is based on a threshold value
that has to be estimated by observing several force profiles
where the spiral movement fails to find the screw.
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Future work will consider the variation of further parameters
of the screwing strategy, such as environmental stiffness, screw
size, workpiece material, etc., to train the logistic regression
model and evaluate its robustness. Even though logistic
regression model is intended for binary classification problems,
it can be modified for multi-class classification problems by
utilizing multiple decision layers. The learning model can be
extended to include an additional state, namely when the spiral
movement fails to find the screw. This way, the proposed screw
method can be simplified using a single learning mode that also
covers failed screw interlock.
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Figure 5 Experiment 2: Force profile of a successful interlock task
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