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Abstract—The Internet of Things (IoT) generates vast amounts
of data through sensors, enabling AI to train accurate models
and develop Industry 4.0 (I4.0) systems that adapt to real-
time changes. Federated Learning (FL), a distributed machine-
learning paradigm, allows training across multiple devices while
preserving data privacy by keeping the data local. However,
classical FL’s synchronous aggregation strategy is inefficient for
heterogeneous IoT devices. Additionally, IoT edge devices face
storage limitations and generate continuous data streams, requir-
ing adaptive online learning. We propose ASynchronous Online
Limited Storage Federated Learning (ASOLS-Fed), where edge
devices perform online learning on limited local data streams.
ASOLS-Fed updates the global model asynchronously, mitigating
straggler effects caused by slow or dropped devices. Experiments
on benchmark datasets show that ASOLS-Fed converges well,
maintaining stronger predictive performance even with limited
training samples.

Index Terms—Federated Learning, artificial intelligence, in-
dustrial IoT, elastic weight consolidation, asynchronous federated
learning, online federated learning

I. INTRODUCTION

Statista [1] forecasts that Internet of Things (IoT) devices
worldwide will double from 15.9 billion in 2023 to more than
32.1 billion devices in 2023. The rapid adoption of IoT is fu-
eled among other factors by recent advancements in connectiv-
ity, hardware costs and integration with Artificial Intelligence
(AI). Traditional centralized AI approaches face issues such
as latency, bandwidth, and privacy concerns affecting their
effectiveness in IoT environments. Federated Learning (FL)
offers a promising solution by leveraging on-device training,
reducing communication cost, and safeguarding data privacy.
In FL, only the model gradients are transmitted to the server,
significantly reducing bandwidth requirements and enhancing
security, as no actual data leaves the device.

However, traditional FL approaches assume synchronous
aggregation and that devices can adequately store data in-
definitely, assumptions that do not hold in the heterogeneous
IoT systems domain. In real world applications, edge devices
often have limited storage that prevents them from storing
streaming data leading to potential loss of knowledge and
’catastrophic forgetting’. Additionally, such systems are also
characterized by heterogeneity among the devices and variable
network reliability. These challenges highlight the need for
an FL framework that supports asynchronous aggregation and
effective learning under storage requirements. Even though
several works have been focused on addressing the straggler
effect with asynchronous communication protocols, the area
of limited storage on the device remains underexplored.

This paper addresses these gaps by proposing
ASynchronous Online Limited Storage Federated Learning
(ASOLS-Fed), a framework designed to handle asynchronous
client updates while preserving knowledge due to training on
devices with limited storage capabilities. Key contributions
of this work include:

• Addressing the limitations of traditional FL in IoT edge
devices, which often operate under storage constraints
and storing extensive past data is infeasible.

• Incorporating Elastic Weight Consolidation (EWC) [2]
and FedProx [3] proximal term with an asynchronous
aggregation strategy on the server. EWC preserves param-
eters critical for the data that are no longer available in
the device overcoming catastrophic forgetting, while Fed-
Prox addresses data heterogeneity among clients. Asyn-
chronous communication mitigates the straggler effect
where slow or dropout devices increase overall training



time and result in under utilization of faster devices.
• Demonstrating through empirical evaluation that the pro-

posed method achieves stable convergence and higher
accuracy compared to other asynchronous and online FL
methods in conditions of extreme storage limitations.

The remainder of the paper is structured as follows: Section
II presents a review of the relevant literature, while Section
III presents the proposed algorithm.. Section IV presents the
performance evaluation and results. Finally, Section V contains
the conclusions of this paper as well future research directions.

II. RELATED WORK

This section presents the literature review of asynchronous
and online FL as well as methods that employ EWC [2].

A. Asynchronous Federated Learning

Various studies have been focused on refining and optimiz-
ing the asynchronous federated learning approach to make it
more effective and practical for real-world applications. In [4]
employ an asynchronous aggregation scheme paired with an
adaptive weight aggregation method. The Euclidean distance
between the global model and the stale model is used to
adapt the weight of each client update to reduce the impact
of outdated updates. In [5] the authors address the issue of
imbalanced learning due to asynchronous updates using a
binary weights adjustment method. The method adjusts both
sample and parameter weights based on the staleness of the
gradients and the amount of data in the device. In [6] an
asynchronous FL system is proposed based on two key ideas
to regularize the objective function and to utilize a weighting
mechanism during aggregation that considers staleness of the
update.

B. Asynchronous Online Federated Learning

In ASO-Fed [7] an ASynchronous Online Federated Learn-
ing framework is presented which focuses on asynchronous
communication with convergence guarantees to maintain opti-
mal performance. The work in ASO-Fed is closely related to
IoT and Industrial settings since it considers not only hetero-
geneous devices and data but also considers the existence of
continuous data streams and addresses this by employing an
online learning procedure. To ensure an optimal global model,
the deviation of the local gradients is constrained with the use
of a threshold imposed locally on the devices. Client balance
training on new data using a decay coefficient. Aggregation
on the server employs feature learning to extract a cross-
client feature representation which is used to dynamically
adjust the client learning rates. The inspiration for feature
learning comes from attention mechanisms, which have been
proven to be highly effective in identifying crucial features.
The dynamic learning step size which is calculated based
on feature representation is used to address stragglers and
improve performance. Stragglers are assumed to have a smaller
activation rate when using the global model and thus their
learning step size is increased.

C. Elastic Weight Consolidation in Federated Learning

In [8] the authors utilize EWC towards estimating the
importance of the parameters of the neural network. The
authors integrate the Fischer Information Matrix with Bayesian
Parameter Importance to estimate the importance of the param-
eters and guide the parameter-wise elastic weighted averaging
on the server improving efficiency in non- Independent and
Identically Distributed (IID) data environments. In [9] EWC
is integrated in a blockchain-based FL system and aims to
retain knowledge learned in a dynamic environment where
devices join or leave the training process at different times. The
authors in [10], FedAF, proposes EWC to guide the unlearning
process of target data without forgetting knowledge regarding
non-target data. In [10] the authors employ multi-task learning
to fine-tune and adapt the local model on the client side and
propose utilizing EWC to prevent forgetting of the global
knowledge. The authors in [11] utilize EWC in a similar way
to regularize the fine-tuning process of self-supervised learning
models. Similar to our approach [12], EWC is used to ensure
that the important parameters of the global task are preserved.

Even though EWC has been used mainly for addressing
statistical heterogeneity in the clients datasets there is no
work utilizing EWC to address storage limitation in FL.
Furthermore, the work closer to ours is [12] which also
modifies the local objective function of the clients, but in this
work the Fischer Information Matrix is used to evaluate the
importance of the parameters for the global task instead of the
importance of the parameters for the local task of the previous
round which is the case in our work.

D. Motivation

The above-mentioned algorithms offer significant improve-
ments, but they do not consider practical client resources.
When performing FL in real-world applications, clients may
have limited resources and they are most likely unable to
store large volumes of data samples. Previous methods assume
that all incoming data are available for consecutive rounds
however, when data are discarded due to storage limitations,
training faces the challenge of catastrophic forgetting, where
the model is unable to retain previously learned knowledge.
This is particularly problematic in online learning, where the
model must be able to integrate knowledge from new data
without affecting its performance on data samples that are not
available in the current round. For this reason, it is essential to
develop methods that consider the limitations of client devices
in the asynchronous and online settings.

III. PROPOSED METHOD

The following section presents the FL algorithm proposed
as well as details about the functionality of the server which
is responsible for aggregating the collected client updates
asynchronously. The client module trains a local model on
streaming data, evaluates the importance of the trained pa-
rameters calculating a Fisher Information Matrix (FIM) and
sends the update to the server.



Fig. 1. Asynchronous and Online Federated Learning for Limited Storage.

A. Central aggregation

In asynchronous FL the server aggregates received updates
immediately when they arrive without waiting for the rest of
the clients to finish their training. This allows the clients to
send their updates at different times without stalling the proce-
dure. At each step the server performs a weighted aggregation
of the global model with the client’s update thus maintaining
this way a continuously updated global model. In our setting
we utilize an extension of the FedAvg algorithm that supports
asynchronous aggregation. The updated global model wt+1 is
computed as a weighted average of the previous global model
wt and the new local model wt+1

k received from client k:

wt+1 = wt − nk

N
∆wk (1)

We denote by n the number of training samples used for
training of the local model by the client and by N , the total
number of samples processed by all the clients so far.

B. Learning on Client

In Online FL clients train their models from streaming data
that arrive over time. In such settings, each time a client trains
on new data can be viewed as a new task for the model to
learn.

EWC is an important method that can be integrated in FL
clients to mitigate catastrophic forgetting when the model is
trained without access to past data thus leveraging techniques
from transfer learning into FL to reduce storage requirements.
EWC utilizes the Fisher Information Matrix to identify and

preserve parameters that are important for previous samples
that are no longer available.

Another significant challenge is data heterogeneity among
clients in federated networks. Non-IID data among clients can
lead to instability and poor convergence during the training
process. FedProx [3] is an extension to the standard Federated
Averaging algorithm and is designed to address this issue. The
key idea behind FedProx lies in the addition of a proximal term
to the objective function of each client. The purpose of the
proximal term is to penalize large deviations from the current
global model mitigating the impact of heterogeneity.

Combining EWC with FedProx Our proposed FL client
module integrates EWC and the proximal term derived from
FedProx to address the online learning of heterogeneous
FL clients with limited storage. To integrate the EWC with
FedProx the local objective function of the client is modified
to include both the EWC regularization term and the FedProx
proximal term.

The EWC regularization term is defined in Equation 2.
Where λ is a hyper-parameter and denotes the regularization
strength, which sets how much the importance of parameters
of the previous round affect training, Fi denotes the Fisher
Information Matrix (FIM) [2], wi are current parameters and
w∗

i are the optimal parameters from the previous round.

λ

2
ΣiFi(wi − w∗

i )
2 (2)

The FIM is calculated based on the second-order derivatives
of the log-likelihood of the client data given the new optimal



parameters. Calculating a full FIM for neural network may
result in an extremely large matrix. Therefore, for practical
and computational reasons the diagonal approximation of the
FIM is used. For the approximation the following formula is
used:

Fi = E
[
(∇wi

L(w))
2
]

(3)

In practice, the expectation is approximated by averaging the
value of (∇wi

L(w))
2 for every sample currently available.

The calculation of the FIM occurs at the end of each round to
capture the importance of the parameters for the current data
that will not be available in the next rounds.

The FedProx Proximal term is defined in Equation 4. We
denote µ the proximal term strength, w the parameters of the
model and wt the parameters of the global model at round t.

µ

2
||w − wt||2 (4)

The combined loss function for client k becomes:

Sk(w : wt) = Lk(w) +
λ

2
ΣiFi(wi − w∗

i )
2 +

µ

2
||w − wt||2

(5)
The local objective function Sk(w : wt) is composed of

three main terms.
• The first part, consist of the local loss term Lk(w) which

corresponds to the standard local loss on client k data and
minimizes the error of the model on these data through
optimization.

• The second term regards the EWC regularization term
λ
2ΣiFi(wi − w∗

i )
2. This term reduces the change for

parameters that are important for the data from the
previous rounds. The (wi − w∗

i )
2 calculates the squared

difference between the current parameters and the optimal
parameters of the previous round indicating how much
the parameters changed. The Fi is the importance matrix
which represents the importance of each parameter for
the data of the previous round and are used to scale
the difference accordingly. Finally, the sum of the scaled
squared differences are multiplied by λ

2 producing the
final EWC penalty value.

• The third term regards the FedProx regularization term.
The term consist of the squared Euclidean distance be-
tween the current parameters and the global parameters
scaled by µ

2 to produce the final proximal penalty term.
µ is a hyper-parameter that controls how much the term
affects training.

The proposed objective loss function allows the clients to
integrate knowledge learned from samples in the previous
rounds and that are no longer available. Also, the proximal
term prevents the local model from strongly deviating from
the global model, reducing the impact of Non-IID data. After
the client calculated the optimal parameters for the specific
round and available updates the Fischer Information Matrix
and stores it for use in the next round. Fig. 1 illustrates
the proposed method, showing data flow, weight updates,
and Fisher Information Matrix usage across multiple clients

connected to a central server that aggregates client updates
asynchronously.

Algorithm 1 Asynchronous and Online FL with Limited
Storage Algorithm

1: Input: Global model w0, learning rate η, regularization
parameter λ, proximal term µ

2: Initialize global model w0

3: Procedure at Central Server
4: for global iteration t=1,2,...,T do
5: compute wt:

wt = wt−1 −
nk

N
∆w′

k

6: end for
7: Procedure of Local Client k at round t
8: receive wt from the server
9: Client k calculates the local update:

Sk(w;wt) = Lk(w) +
λ

2
ΣiFi(wi − w∗

i )
2 +

µ

2
||w − wt||2

10:

w′
k = wt − η∇Sk(w;wt)

11: Client k updates Fi = E
[
(∇wi

L(w′
k))

2
]

using the current
data and the updated model.

12: Client k sends updated model w′
k to the server.

IV. EXPERIMENTAL SETUP

To evaluate the proposed algorithm, empirical experiments
have been conducted to compare the method against two
baseline methods that have been identified in the literature
on a benchmark dataset for Image Classification.

Dataset and federated split. Fashion-MNIST regards a col-
lection of 60,000 training images and 10,000 testing images.
Each sample consists of a 28x28 grayscale image of a fashion
item and a label from 10 classes. The dataset has been divided
into 20 devices as in [7]. First the data are sorted based on
their label, and the samples of each label are divided into 4
different sizes 2000, 2750, 3250, 4000. Finally each client is
assigned 2 different sizes.

Model. The architecture of the neural network for this
10-class classification task is a simple convolutional neural
network with two convolutional layers, each followed by
ReLU activation. After downsampling with max pooling, it
flattens the feature maps and passes them through a fully
connected layer to produce the final output.

Configuration. The configurations used in the experiments
are shown in Table I. We denote as |Ct|

|C| the client participation
rate, η the learning rate, e the number of local epochs and Bc

the storage capacity, expressed as fraction of the total number
of samples each clients possesses. To simulate the setting of
streaming data, we set the device to randomly sample To
simulate the setting of streaming data, we set the on-device
data arrival to be ns = (total client training samples)

(number of rounds) , which



means that each device c ∈ C will receive ns data samples in
each communication round.

Baselines. In the evaluation experiments, we compare the
proposed method ASOLS-Fed, ASynchronous and Online
with Limited Storage, algorithm against the standard baseline
method for Asynchronous Federated Optimization FedAsync
[6], a baseline method for online FL Federated Online Mirror
Descent (FedOMD) [13] and the only other asynchronous and
online method Asynchronous and Online FL (ASO-Fed) [7].

• Asynchronous Federated Optimization (FedAsync) is a
baseline method in federated learning systems that sup-
ports asynchronous aggregation employing FedAvg [14]
for aggregation on the server.

• FedProx [3] works by adding a proximal term in the
objective function of the clients and is a well known
method to address heterogeneity in federated learning
systems. In our experiments the method is paired with
an asynchronous aggregation mechanism on the server
similar to the one used in FedAsync. [14] for aggregation
on the server.

• Federated Online Mirror Descent (FedOMD) is a baseline
method that considers online learning on the clients. The
method employs mirror descent algorithm during local
training on the device. The method is paired with an
asynchronous aggregation mechanism similar to the one
used in FedAsync.

• Asynchronous and Online FL (ASO-Fed) method is the
only other FL strategy for aggregating data online and
asynchronously. This method introduces and utilizes fea-
ture learning to calculate a cross-client feature represen-
tation based on an attention mechanism and is employed
to address potential effects from asynchronous updates.

Simulation. The experiments were run on a single computer
with a GPU using Pytorch and the simulation engine from the
Flower FL framework [15].

TABLE I
EXPERIMENT CONFIGURATION

Dataset Samples Devices |Ct|
|C| η e |Bc|

Fashion-MNIST 70,000 20 10% 1e−3 1 0.3

Results.
Empirical results shown in Fig. 2, demonstrate that our pro-
posed asynchronous aggregation mechanism achieves conver-
gence of the model and higher accuracy compared to all the
other methods used. Compared to the baselines, ASOLS-Fed
greatly outperforms the other algorithms achieving around to
60% accuracy, while the rest do not exceed 46%. Specifically
ASO-Fed, the only strategy that considers asynchronous aggre-
gation of continuous streaming local data achieves a maximum
accuracy of 28%. All the algorithms exhibit great instability
suggesting that they struggle to converge under the extreme
storage limitations. Our proposed approach is the most stable
and continuously improving method among the three.

Fig. 3 also validates the above observations. Even though the
rest algorithms in the initial few rounds demonstrate greater
reduction of loss, ASO-Fed demonstrates greater reduction of
final loss. In addition the loss curve of the other algorithms
stabilize at a very high point indicating that their global
models do not continue to learn. In contrast the loss curve of
the proposed method exhibits a steady downward trend that
suggest that the model continues to learn effectively.

Experimental results utilizing the Fashion-Mnist dataset,
indicate that existing algorithms struggle to perform in the case
of asynchronous and online training with limited storage. The
proposed algorithm achieves convergence of the global model
indicating that combining EWC and FedProx is effective in
improving both learning stability and performance in scenarios
with storage limitations.

Fig. 2. Accuracy of proposed ASOLS-Fed on Fashion-MNIST dataset.

Fig. 3. Loss of proposed ASOLS-Fed on Fashion-MNIST dataset.



V. CONCLUSION AND FUTURE STEPS

In this work, we extend research in the field of limited
on-device storage and streaming data, an area that has yet
to be fully explored in FL systems. We then presented the
implementation of ASOLS-Fed, which is an asynchronous
and online FL method for devices with limited storage. The
method consists of an updated objective function that retains
knowledge from data that is no longer available on the device.
Empirical results demonstrate that the method is able to
converge in cases where only a small portion of data is
available on the device in each round while state-of-the-art
methods do not succeed.

As industries increasingly adopt decentralized and dis-
tributed systems that align with IEC 61499 standard for dis-
tributed industrial automation, the application of FL systems
becomes more relevant. FL, as a distributed system across
heterogeneous devices, shares the same principals defined by
the IEC 61499. The algorithm presented in this work can be
integrated into industrial systems that abide by the standard,
enabling more intelligent, adaptive, and robust control systems.
In future work, a practical implementation of this method in
an actual industrial setting to evaluate the synergies between
the proposed method and a standardized distributed control
architecture will take place.

Regarding future work, the current considerations for im-
provement of the proposed method are twofold. First, we
plan to incorporate an adaptive aggregation mechanism that
considers staleness when weighting the collected updates.
Staleness of local updates is used extensively in the literature
to improve the aggregation mechanism. By giving more weight
to recent updates the aggregated global model reflects better
the latest data distribution. In addition, several other aspects
of the IoT domain can be considered during aggregation
including device capabilities, connectivity, and energy con-
straints. Adaptive aggregation can alleviate these challenges
that arise from these limitations and enhance performance of
the proposed method. Secondly we plan to incorporate sample
level selection techniques, such as ODE [16], to improve
storage efficiency further. These approaches are beneficial
in cases of large volume of streaming data, such as that
produced by IoT sensors, allowing for efficient use of storage
resources and potentially enhance training by selecting a more
representative dataset while removing corrupt, redundant or
even malicious data.
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