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Abstract—Industry 4.0 (I4.0) integrates Informa-
tion and Operational Technologies (IT and OT) to
enhance industrial efficiency, sustainability, and cost-
effectiveness. This paradigm includes 5th generation
(5G) networks, Internet of Things (IoT), Digital Twins,
and Artificial Intelligence (AI), but also introduces new
security risks. We present a novel anomaly detection
system for 5G-enabled Industrial IoT (IIoT) using
deep learning techniques and multi-stage detection to
address these challenges.

Index Terms—Artificial Intelligence, Beyond-Fifth
Generation, cybersecurity, Industry 4.0, Industrial In-
ternet of Things

I. Introduction
Traditionally, Industrial and Operational Technology

(OT) environments operated independently from Infor-
mation Technology (IT). However, OT systems are now
increasingly integrated with IT to enhance efficiency and
productivity. This convergence is rapidly advancing, in-
tegrating diverse technologies. This integration exposes
production and manufacturing infrastructures, along with
their processes, to the broader IT and Internet ecosystem,
which significantly increases their vulnerability to a wide
range of cyber-threats and risks.

To address these threats, anomaly and intrusion detec-
tion mechanisms are critical for safeguarding industrial
systems, especially those using 5G, Beyond-5G (B5G),
Cyber-Physical Systems (CPS), and IIoT. As industrial
environments become more connected and face increas-
ingly sophisticated threats, the need for robust defense
mechanisms is more urgent than ever, as these systems
provide a crucial first line of defense, ensuring the security,
resilience, and reliability of critical industrial infrastruc-
tures.

Modern anomaly detection solutions use advanced al-
gorithms to monitor network traffic, system behavior, and
data patterns continuously. These solutions are designed
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to identify any unusual or suspicious activities that may
indicate a potential intrusion [1]. Once an anomaly is
detected, prompt mitigation measures are deployed, which
can include isolating compromised systems, updating secu-
rity protocols, or even shutting down critical components
to prevent further damage or data breaches [2].

The remainder of the paper is structured as follows:
Section II presents an extensive review of the relevant
literature while section III contains and explains the model
proposed. Then Section IV presents the performance eval-
uation assumption and results. Finally, section V contains
the conclusions of this paper along with future research
directions and aims.

II. Related Work
This section reviews recent literature on industrial cy-

bersecurity anomaly detection. I4.0 promises real-time,
secure, and autonomous manufacturing environments. The
Industrial Internet of Things plays a pivotal role in turning
this potential into reality by facilitating advanced wire-
less connectivity (5G/b5G) for seamless data collection
and processing across interconnected industrial facilities
and Cyber-Physical Systems. However, implementing IIoT
systems involves the integration of diverse technologies,
resulting in the collection of data that may be incomplete,
unstructured, redundant, or noisy. This situation gives rise
to security vulnerabilities and challenges related to the
quality of data within these systems.

Deploying anomaly detection systems is an effective
approach to ensuring data integrity. These systems pro-
vide specific insights to determine whether a device is
malfunctioning, if a critical event is unfolding, or if there
is a breach in the system’s security. By employing early
anomaly detection mechanisms, the IIoT system can avoid
being influenced by anomalous data when making deci-
sions.
A. Cybersecurity Attacks in IIoT and 5G

This subsection presents a listing of known cybersecu-
rity attacks against systems utilizing IIoT and 5G net-



Fig. 1. High level architecture of the proposed approach.

TABLE I
Cybersecurity attacks faced by IIoT/5G networks mapped

to OSI layer

Type Layer Attacks

Network
Attacks

Network Layer Traffic Analysis, Wormhole, Sybil,
RFID Spoofing and Unauthorized
Access, WLAN spoofing, Routing
Information, Man in the Middle/
Eavesdropping, Selective Forward-
ing, Replay, Sinkhole, DoS/ DDoS,
Threats to Neighbour Discovery
Protocol, Impersonation

Session Layer Denial/ DDoS
Transport
Layer

Desynchronization, SYN flood

Software
Attacks

Application
Presentation
Layer

Virus, Worms, Trojan Horses, Spy-
ware, Ransomware, Cryptojacking

All Layers Misuse of audit tools

Data
Attacks

Presentation
Layer

Data Inconsistency

Session Layer Unauthorized Access (Remote to
Local , User to Root)

Network Layer Data Inconsistency, Data Breach,
Network virtualisation bypassing:

Data Link
Layer

Data Transit attack

works, based on [3]–[9]. These attacks are summarized
in Table I. Cybersecurity attacks can be classified into
Network, Software, and Data Attacks, and can be mapped
to the seven layers of the OSI reference model [10].

Network attacks involve the manipulation of the func-
tionalities of the network to gain access to sensitive or pri-
vate or cause problems to the normal network operations.
Software attacks, as the name implies are attacks that
utilize software, many times self-propagating to exploit
and introduce vulnerabilities into a system or interrupt
its’ normal operations. Finally, data attacks are the types
of attacks that affect data integrity or ownership in the
system examined.

B. Anomaly Detection and Classification in 5G/B5G Net-
works

The ongoing development of 5G (and beyond) networks
is geared towards accommodating increased data capac-
ity, increased number of connected devices, more densely
populated networks, all while delivering reduced latency
and lower power consumption compared to existing net-
work generations. 5G upon fully realized deployment, will
enable a wide array of vertical markets and industries to
introduce a variety of new, diverse services along with new
or not realized diverse threats against them.

Network anomaly detection in older generation networks
is a well-studied subject and the approaches utilized can
fall into three different categories [11]: a) manual detection
of the anomalies based on expert opinion, b) measur-
ing of network related metrics and based on predefined
thresholds define benign and anomalous traffic and c) uti-
lization of Machine Learning algorithms that are trained
to recognize normal and abnormal traffic. The first two
options are considered outdated [12] as they cannot keep
up with the complexity and the scales of modern networks.
However experimental studies [12] show that even ML
based methods may not be able to keep up with the traffic
density and throughput required by 5G/B5G networks.

Literature [11] suggests that Deep Learning (DL) is
the ideal approach to address the problem of anomaly
detection in 5G/B5G networks: DL-based methods achieve
SotA results in the task. Additionally, classic ML classifi-
cation algorithms typically rely upon feature engineering
methods to reduce the dimensionality of their input while
DL algorithms can automatically extract high-level fea-
tures from large amounts of raw data, preventing overfit-
ting based on regularization techniques. There are numer-
ous applications of DL algorithms to detect anomalies in
5G networks: e.g. in [11] the authors utilize a stack of self-
attention based networks. In [11], the authors suggest a
two-phase scheme: A Long Short-Term Memory Recurrent
Network (LSTM) is used to detect the anomaly, while a
DNN composed by a Deep Belief Networks (DBN) and
Stacked AutoEncoders (SAE) is utilized to classify the
anomaly into a specific category. In [13], the network flow
data is treated as an image, inputted to a Residual U-



Net Architecture, in an attempt to better model time
dependent features without delays. In [14], a Variational
Autoencoder (VAE) using Convolutional Neural Networks
(CNN) is used to detect and classify the anomalies.

C. Anomaly Detection and Classification in IIoT Networks
and CPS

Early detection of anomalies in an industrial process
is essential to implement decisions based on real-time
information, thus reducing maintenance costs, minimizing
machine downtime, increasing safety, and improving prod-
uct quality [1].

A recent literature review of approximately 100 papers
published after 2018 about IIOT anomaly detection [15],
showed that DL methods make up 56.5% of the proposed
approach. Approximately, 22% of the remaining papers
proposes statistics-based methods (e.g., Kalman Filters,
Fourier Transformations, Markov Chains) and finally 21%
utilizes ML based methods (e.g., Decision Trees, SVM,
Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)). Concerning the DL based methods [15]
, shows that Transformers are most common type of NN
utilized, followed by Variational Autoencoders and LSTM
Long-Short Term Memory) networks.

Authors in [16] propose the use of Graph DNN for net-
work anomaly detection and presents examples for three
industrial use cases: smart transportation, smart ener-gy,
and smart factory. In [17] it is proposed to use a two-stage
distributed approach that combines Autoencoder DNNs
for traffic compression and the AdaBoost ML algorithm for
the classification of the traffic to anomalous and benign. In
[2] an approach is presented that utilizes Fully Connected
DNN to detect anomalies in two Cyber-Physical Systems
and showcases that generating synthetic adversarial data
and retraining the DNN utilizing them, results to im-
proved performance. In [3], the authors present a multi-
stage, low latency module for a) the detection, b) the
classification and c) the response against attacks against
mission-critical Smart Factory Networks. The same paper
shows that Multi-Layer Perceptron Models (MLP) per-
form better from RNN, LSTM and CNN networks for
anomaly detection, while CNN networks outperform the
same networks for attack classification models. Finally,
an Intrusion Response System (IRS) uses a predefined
rule set where each type of attack is linked to a specific
single countermeasure. The topic of proactive anomaly
detection to secure the 5G enabled IIoT ecosystem is a
hot topic of research and innovation in the Information and
Communications Technology (ICT) industry [18] . There is
a race to introduce proactive anomaly detection solutions
that can automatically and adaptively introduce security
measures for unforeseen future attacks and enforce ap-
propriate security measures to protect the IIoT network
against them. The following section contains our proposed
model.

III. Proposed Model
This section contains a presentation of the architecture

functionalities of the three sub-modules of the Anomaly
Detection (AD) module: First the Ultralight Anomaly
Detection (UAD) sub-module which detects anomalies by
monitoring network traffic. Then the Anomaly Classifica-
tion (AC) submodule which discerns if the pattern of a
detected anomaly corresponds to known attacks. Finally,
the Deep Packet Inspection (DPI) submodule tools allows
the system operator to further gain knowledge about
unknown anomalous traffic detected. Our approach, is
based on the combination of multiple methods that result
in a SotA approach:

• The multi-stage approach of [3], [14], to ensure rapid
anomaly detection and robust anomaly classification.

• The training approach proposed by [2], and [14] i.e.,
the utilization of synthetic training data creation to
enhance model performance. However we propose the
use of SotA Autoencoder models, i.e. Conditional
Variational Autoencoder (CVAE) presented in section
III-A instead of the Fast Gradient Signed Method.

• We build on the findings of [13] which showed suc-
cessful application of 1D CNN in anomaly detection
on 5G data. We apply a similar 1D CNN presented
in III-A, to IIoT related data.

• We build on the findings of [14] who combined autoen-
coders with 2D CNN also for attach type classification
in 5G data. We advance this approach by using more
modern variant CNN, called Dilated Causal CNN
(DCCNN) [19] , presented in section III-B, to IIoT
related data.

A. Ultralight Anomaly Detection submodule
Swift anomaly detection in network traffic is essential

for securing systems, enabling faster mitigation against
malicious activity. Anomalous traffic may indicate attacks,
malfunctions, or hardware errors. Network traffic anomaly
detection has been extensively researched: The available
literature suggests that artificial intelligence extends bet-
ter to large-scale intrusion data with higher dimension
compared to ‘traditional’ ML methods. The submodule
receives raw traffic data as input, captured in real time. A
high level overview of the functionality and I/O of the
submodule is shown in Figure 1. The following traffic
related features are then calculated and taken into con-
sideration, as proposed by [20]: Basic Flow Features e.g.
Destination Port, Protocol, Flow Duration, Total Forward
Packets, along with inter-Arrival Time (IAT) Statistical
Metadata e.g. Flow IAT Mean, Standard Deviation etc.
Let X ∈ R be the input data containing Basic flow
data and IAT Statistical metadata described earlier, and
C ∈ {Benign, Anomalous} the class labels associated with
it. Let Qϕ(Z|X, C) and PΘ(X|Z, C) be the Encoder and
Decoder networks, and ϕ, θ be learnable parameters.

The purpose of the encoder is to use X, C to create a
latent variable Z ∼ Qϕ(Z|X, C). In the decoding phase,



the latent variable Z and c ∈ C are utilized as inputs to
generate new samples for label c, X̂ ∼ PΘ(X|Z, C).

The Log-Cosh CVAE utilizes the following objective
function:

Llog-cosh(X, X̂) = 1
a

∑
i

log
(

cosh
(

a(Xi − X̂i)
))

(1)

where a ∈ R is a hyper-parameter, Xi ∈ X, and X̂i ∈ X̂
are the i-th elements of X and X̂, respectively.

Finally, the comprehensive loss function for the model
is:

L(ϕ, θ; X, C, a) = Llog-cosh(X, X̂)
− DKL [Qϕ(Z|X, C) ∥ PΘ(X|Z, C)]

(2)

where DKL denotes the Kullback–Leibler divergence.
Collecting benign traffic data for a network is a trivial
process. By generating X̂ for anomalous traffic data we
can create a labelled dataset S that is balanced for all
c ∈ C, created by merging, X̂, X, C . This is utilized to
train a lightweight 1D Convolutional CNN that performs
binary classification. This classifier is then used to discern
between anomalous and benign traffic. This the same
approach proposed in [21], which to our knowledge has
not been tested in IIoT and 5G network traffic.

B. Anomaly Classification submodule
After an anomaly is detected by the UAD, the next step

is to try and discern a) the type of anomaly and b) in
the case of a cyber-threat, its’ type. Correct recognition
concerning the types of attacks faced by the system is
essential to select the appropriate countermeasures to
mitigate them. Moreover, this tool helps to monitor cases
of false positives: Benign traffic identified as anomalous
might indicate that the UAD submodule needs retraining.
The submodule receives the segments of traffic recognized
as anomalous by the UAD and uses the same features as
it to try and classify the anomalous traffic to three classes:
1. Attack when the pattern of the traffic corresponds to
a known attack type, 2. Benign when the pattern of the
traffic corresponds to normal traffic i.e., a false positive. 3.
Unknown, which warrants more inspection by the system
operator.

CNNs segment the input data using so called filters,
which allows them to learn specific patterns. Contrary to
other types of DNN e.g., LSTM, CNN are by design not
fully connected. This meaning that the not all nodes of
the network relate to one another thus less calculations
are required and CNN are less computationally expensive.
Simple CNN have been shown to effectively model multi-
dimension patterns and capture the high temporal corre-
lation of traffic data. A special case is the DCNN: In this
variant of the CNN, the filters are applied by skipping
certain elements in the input, allow the receptive field
of the network to grow exponentially [19]. This property

Fig. 2. High level architecture of the Neural Networks.

allows them to model even sparse data along with both
long-term and short sequence relationships present.

Let X = {Xt−(k−1), Xt−(k−2), Xt−1, Xt−(k−1)} be the
input data, i.e., a time series of consecutive observations
of anomalous traffic data, with k ∈ N being the kernel size,
t ∈ N being the time window size (i.e., the number of ob-
servations in the time series), and Ot the output obtained
using the values from X. The dilated causal convolution
operations over the network layers are described by the
following equation :

xt
l = g

(
K−1∑
k=0

wk
l x

(t−(k·d))
l−1 + bl

)
(3)

where xt
l is the output of the neuron at position t in the

lth layer, K is the width of the convolutional kernel, wk
l

represents the weight at position k, d is the dilation factor
of the convolution, and bl is the bias term.

IV. Performance Evaluation
The following subsection presents the lab evaluation

results concerning the modules discussed in section III,
i.e. the UAD and the AC modules.

A. Experimental Setup
The proposed algorithms were evaluated in multiple,

modern, publicly available datasets. In all cases, the al-
gorithms were written in python, while the Deep Neural
networks used utilize the Pytorch Deep learning frame-
work. To optimize the hyper-parameters of the algorithms
used, the number of layers and the window size of the input
data for the DCCN, a SotA Bayesian hyper-parameter
optimization algorithm, the Tree-structured Parzen Esti-
mator was utilized [22]. In all cases the datasets where
split into two parts: 70% percent of data was used for
training while the remaining part was used for testing
the algorithm. The split was done in a stratified manner



TABLE II
Low Footprint Dataset Results

A
no
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al

y
D

et
ec

ti
on

Algorithm Accuracy F1-score Inference
Time

CONV-1D +
CVAE (proposed) 0.925 0.9441 0.0428
CONV-1D 0.922 0.9447 0.0421
Random Forest 0.6516 0.6636 0.2935
SGD 0.6353 0.6351 0.0640
MLP 0.6259 0.6231 0.2958

A
no

m
al

y
C

la
ss

ifi
ca

ti
on

DCNN +
CVAE (proposed) 0.72121 0.756 0.11095
DCCN 0.71888 0.695755 0.1276
Random Forest 0.667003 0.360698 0.44075
SGD 0.577754 0.194291 0.09494
MLP 0.399633 0.115552 0.29222

ensuring that all classes were represented in both the
training and the testing phases. The following ML and DL
algorithms were used to compare and evaluate the results
of our proposed algorithms: Random Forest, MLP NN and
Stochastic Gradient Descent (SGD). The proposed high
level architectur of the NNs is shown in Figure 2

B. Experimental Results
The following results demonstrate that, in all cases,

the proposed algorithms either outperform or match the
performance of other commonly used algorithms for the
same tasks, with metric differences such as accuracy being
less than 0.01. Additionally, the proposed algorithms are
relatively fast, performing the classification task in less
than 0.5 seconds. Moreover, we see that using synthetic
data for training, produced by the CVAE enhances the
algorithms performance.

1) Low Footprint attacks: UNSW-15 is a publicly avail-
able dataset that commonly used to train and evaluate
AD systems in the IIoT context [23] .This dataset contains
normal traffic as well as nine different attack types i.e. net-
work Analysis, Backdoor utilization, DoS attack, Exploit
based attacks, Generic against Hash Functions, network
Reconnaissance, Fuzzers for anomalous activity, Shellcode
attacks, and Worm attacks. Most of these attacks have
a low footprint, meaning that their network presence is
sparse or that they change their traffic pattern over time to
behave in a manner like benign traffic. This characteristic
makes the attacks described here harder to detect and
classify. Table II contains the results.

2) Traffic over 5G network: The 5G-NIDD is an open
dataset that describes real network data collected from
5G base stations [24], including Next Generation Node
B (gNB), Evolved Node B (eNB), a Multi-access Edge
Computing (MEC) station and an 5G Core. It contains
both normal (benign) traffic along with 8 attack types that
can be categorized either as DoS/DDoS attack types, or
Port Scan attack types. Table III contains the results.

3) Attacks against a 5G Core: The 5GAD-2022 is a
dataset that captures network traffic data [25], in the
context of a third-party attacking a 5G Core (free5GC):
In addition to normal traffic it contains 6 attack types

TABLE III
Traffic over 5G Results

A
no

m
al

y
D

et
ec

ti
on

Algorithm Accuracy F1-score Inference
Time

CONV-1D +
CVAE (proposed) 0.9999 0.9999 0.0416
CONV-1D 0.9984 0.9987 0.043893
Random Forest 0.9962 0.9962 0.129
SGD 0.9925 0.9925 0.07945
MLP 0.9954 0.9953 0.06883

A
no

m
al

y
C

la
ss

ifi
ca

ti
on

DCNN +
CVAE (proposed) 0.9805 0.9815 0.1421
DCCN 0.09976 0.9530 0.1392
Random Forest 0.9797 0.9065 0.2193
SGD 0.9774 0.9661 0.1188
MLP 0.9345 0.496 0.1413

TABLE IV
Attacks against a 5G Core Results

A
no

m
al

y
D

et
ec

ti
on

Algorithm Accuracy F1-score Inference
Time

CONV-1D +
CVAE (proposed) 0.9993 0.9994 0.1517
CONV-1D 0.9961 0.996 0.1529
Random Forest 0.9993 0.9994 0.1413
SGD 0.8819 0.9073 0.0068
MLP 0.9791 0.9828 0.0378

A
no

m
al

y
C

la
ss

ifi
ca

ti
on

DCNN +
CVAE (proposed) 0.9855 0.9877 0.1421
DCCN 0.9812 0.9917 0.1392
Random Forest 0.9797 0.9065 0.2193
SGD 0.9774 0.9661 0.1188
MLP 0.9345 0.4960 0.1234

that can be categorized in the following categories: Re-
connaissance Attacks, Network Reconfiguration Attacks,
and DOS attacks. The attacks target the various network
functions that comprise the 5G Core such as the Access
and mobility management function (AMF) and the net-
work repository function (NRF). Table IV contains the
results.

4) Attacks in OPC-UA M2M communication: This
dataset describes traffic in an IIoT environment, and more
specifically traffic captured during Machine-to-Machine
(M2M) communications that utilize the OPC-UA protocol
[26] which is considered one of the most important commu-
nication protocols for Industry 4.0 and IIoT. Apart from
the normal traffic, it contains traffic produced during the
execution of three different attack types i.e., DoS, Man-
in-the-middle and Spoofing/impersonation attacks. Table
V contains the results.

V. Conclusions and Further Challenges
We propose an anomaly detection system specifically

tailored for the cybersecurity needs of 5G-enabled IIoT
networks. Our approach, combining deep learning tech-
niques such as two different variants of CNN and CVAE,
shows superior performance in identifying and classifying
anomalous traffic patterns across multiple datasets related
to the I4.0 context. Experimental results show that our



TABLE V
Attacks in OPC-UA M2M communication Results

A
no

m
al

y
D

et
ec

ti
on

Algorithm Accuracy F1-score Inference
Time

CONV-1D +
CVAE (proposed) 0.9999 0.9999 0.0504
CONV-1D 0.9999 0.9999 0.0514
Random Forest 0.9999 0.9999 0.009
SGD 0.9999 0.9999 0.0015
MLP 0.9998 0.9998 0.0048

A
no

m
al

y
C

la
ss

ifi
ca

ti
on

DCNN +
CVAE (proposed) 1 0.9999 0.05
DCCN 1 0.9999 0.0504
Random Forest 1 0.9999 0.0089
SGD 1 0.9999 0.0015
MLP 0.9998 0.9999 0.0048

approach achieves high accuracy in anomaly detection and
classification with sub-second inference times, making it
suitable for real-time applications in critical infrastruc-
tures..

Future research will aim to extend the capabilities of
the proposed system by testing the method in advanced
attack simulations within real industrial environments
and refining the deep learning models to handle emerg-
ing security threats more effectively. There we aim to
extensively test the scalability of the proposed solution,
using an agent based approach for the deployment of our
mechanisms. Additionally, we aim to integrate automated
anomaly mitigation methods to further enhance system
resilience against evolving cyber-attacks in complex indus-
trial ecosystems.
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