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DISCLAIMER OF WARRANTIES 
This document has been prepared by Zero-SWARM project partners as an account of work carried out 

within the framework of the contract no 101057083.  

Neither the Project Coordinator, nor any signatory party of the Zero-SWARM Project Consortium 

Agreement, nor any person acting on behalf of any of them: 

 makes any warranty or representation whatsoever, express or implied, 

o concerning the use of any information, apparatus, method, process, or similar item 

disclosed in this document, including merchantability and fitness for a particular 

purpose or 

o that such use does not infringe on or interfere with privately owned rights, including 

any party's intellectual property 

 that this document is suitable to any particular user's circumstance; or 

 assumes responsibility for any damages or other liability whatsoever (including any 

consequential damages, even if the Project Coordinator or any representative of a signatory 

party of the Zero-SWARM Project Consortium Agreement, has been advised of the possibility 

of such damages) resulting from your selection or use of this document or any information, 

apparatus, method, process, or similar item disclosed in this document. 

Zero-SWARM has received funding from the European Union’s Horizon Europe research and 

innovation programme under grant agreement No 101057083. The content of this deliverable does 

not reflect the official opinion of the European Union. Responsibility for the information and views 

expressed in the deliverable lies entirely with the author(s). 
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Executive Summary 

In the context of Zero-SWARM, deliverable D5.4 - Penetration and hypothesis testing diagnostic 

plugins v1, is the first technical cybersecurity document of a series of four deliverables. This deliverable 

focuses on the cybersecurity aspects of Cyber Physical Systems (CPS), introducing penetration testing 

as a means of securing such industrial systems. We first try to connect these cybersecurity activities 

with the general architectural overview of Zero-SWARM (D2.2), focusing only on the automation 

architecture presented in D5.1 and extending it to showcase clearly the contribution of this task T5.4. 

Besides the aforementioned connections to these deliverables, there is also a connection to D2.3, 

where the cybersecurity activities of penetration testing and hypothesis testing should follow specific 

guidelines. Nevertheless, it is worth mentioning that D5.4 is also correlated to D5.5 regarding the 

anomaly detection and countermeasure selection modules and how all these cybersecurity modules 

exchange information between them. 

The main activities of penetration testing include the examination of communication protocols, such 

as OPC-UA, MQTT and Modbus and the development of a module capable of testing these protocols. 

Moreover, research has been conducted in order to try to automate the penetration testing processes 

and make them more user-friendly, allowing any IT personnel to conduct such tests. To validate the 

developed penetration testing module, two initial stage simulation testbeds were deployed, one 

regarding the OPC-UA communications while the other was using the Modbus TCP communication 

protocol to exchange data. Several tests were performed and the results together with the deployment 

are reported in this deliverable. Besides these two testbeds, an IEC61499 simulation testbed was also 

developed, giving the opportunity to researchers to assess the industrial communication protocols and 

processes in a more realistic way. 

On the other hand, this task also includes the development and validation activities of the hypothesis 

testing module. In the context of D5.4 some initial work has been conducted and the development of 

this module has advanced and has been reported in this document. The final development and 

validation of this module, in the context of T5.4, will be reported in the next version of this deliverable, 

namely D5.9. 
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1 Introduction 

Within the domain of Cyber Physical Systems of Systems (CPSoS), the relentless pursuit of robust 

cybersecurity is elevated as a paramount and overarching objective. This first version of D5.4 serves as 

a comprehensive blueprint, outlining the multifaceted purpose and strategic roadmap envisioned to 

bolster cybersecurity within the CPSoS ecosystem. At its core, this attempt is driven by the imperative 

to enhance cybersecurity awareness and decision-making capabilities. The primary mission at hand is 

the implementation of diagnostic plugins, namely the penetration testing and the hypothesis testing 

modules, which will function as the linchpin in achieving these goals. These modules are not only 

poised to become integral components of the ambitious Zero-SWARM project. Still, they are also set 

to play an important role in executing meticulous security risk assessments and advanced threat 

modelling for the entire deployed CPSoS infrastructure. As a cornerstone of this initiative, adherence 

to the globally recognized IEC-62443 security standard, specifically tailored to industrial automation 

and control systems, underscores the commitment to ensuring the highest levels of security, including 

elements like confidentiality. 

1.1 Purpose of the document 
The purpose of this deliverable is to outline the comprehensive objectives and strategies aimed at 

enhancing cybersecurity within the context of the CPSoS. The primary goal of this endeavour is the 

development and integration of diagnostic plugins that will significantly augment cybersecurity 

awareness and decision-making processes within the CPSoS framework. These diagnostic plugins will 

play a crucial role in the realization of the Zero-SWARM initiative, focusing on conducting thorough 

security risk assessments and robust threat modelling for the deployed CPSoS. One fundamental 

aspect of this document is the commitment to adhere to the IEC-62443 security standard, a recognized 

benchmark for security risk assessment within industrial automation and control systems. Under Task 

T5.4, the project will prioritize specific security properties, such as confidentiality, to ensure that the 

CPSoS remains resilient against potential threats and vulnerabilities. 

Moreover, a critical component of this task will involve the development of a conformance testing 

tool. This tool is designed to rigorously validate the stability and communication aspects of a secure 

CPSoS architecture from a design perspective. Furthermore, the project will employ penetration 

testing techniques to assess and verify the security configuration of the CPSoS, aiming to identify any 

potential vulnerabilities that could pose a risk to its integrity, confidentiality, and availability. These 

penetration tests will go beyond existing third-party frameworks, extending their capabilities to 

include network discovery and vulnerability exploitation functionalities tailored to the unique 

characteristics of industrial systems, such as OPC-UA and Modbus for communication protocols, MQTT 

for data gathering and cloud services. 

The outcomes of these penetration tests will serve as a basis for the determination of appropriate 

mitigation actions. These actions will be carefully crafted to ensure that they do not compromise the 

integrity, confidentiality, or availability of the critical industrial processes underpinning the CPSoS. 

Furthermore, this document underscores the importance of a proactive approach in addressing 

security threats and risks faced by the CPSoS. It highlights the significance of utilizing data obtained 

through OPC-UA and Asset Administration Shell (AAS) to implement a Hypothesis Testing tool. This 

tool will empower system operators to assess how the application of various countermeasures can 

impact the overall security and functionality of the CPSoS. 

In essence, this document encapsulates the overarching objectives of this project, which are geared 
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towards fortifying the cybersecurity posture of the CPSoS, safeguarding its critical components and 

enabling resilient decision-making processes in the face of evolving security threats and challenges. 

1.2 Structure of the document 
The document is structured as follows:  

 Chapter 1 is an introduction to the whole document, describing its scope and purpose, its 

structure, and the delivery plan during the project’s lifetime, as well as outlining the task’s 

objectives; 

 Chapter 2 provides the connection of deliverable D5.4 to other deliverables of the project; 

 Chapter 3 gives some introductory information regarding the two modules that this task 

should deliver, namely the penetration testing and the hypothesis testing modules; 

 Chapter 4 presents a security analysis of the Cyber Physical System of Systems (CPSoS); 

 Chapter 5 outlines the penetration testing modules focusing on two different protocols (OPC-

UA, Modbus) and presenting the early-stage simulation testbeds, with the help of which the 

penetration testing modules will be validated; 

 Chapter 6 presents the initial idea and methodology for the development of the hypothesis 

testing module; 

 Chapter 7 introduces the IEC61499 simulation platform that will be used in the second stage 

of the task to validate the modules in a more realistic environment, closer to an industrial 

production line; 

 Chapter 8 will conclude the work of this deliverable, provide some insight regarding the next 

steps of this task and will comment on the task’s activities. 

1.3 Deliverable plan along the Zero-SWARM project and objectives 
Based on the project’s Gantt chart, task T5.4 activities started on M07 of the project. The first 

deliverable of this task D5.4 - Penetration and hypothesis testing diagnostic plugins v1 was planned to 

be delivered on M16. Due to the interconnection of this cybersecurity related document to 

deliverables D2.2 and D2.3, whose revisions will be submitted on M17, a delay of about fifteen days 

was requested in order to synchronize the conducted work. Moreover, even though it will be 

mentioned in section 5, part of the work related to penetration testing was submitted and accepted 

for presentation at the IEEE Conference on Standards for Communications and Networking after a 

review process. Due to all the above-mentioned reasons and without derailing any other activities, this 

deliverable, D5.4 will be officially submitted with a small delay. 

In this first phase of task T5.4, partners were able to develop two early-stage simulation testbeds, one 

simulating industrial OPC-UA communications and the other simulating Modbus TCP communications, 

which will be described in this document. Based on these testbeds, we were able to conduct our initial 

penetration tests in order to explore and get to know these protocols better. To this end, the 

penetration testing methodology for industrial scenarios proved to be different from the classic 

methodology someone could use for performing penetration testing towards a web server. Moreover, 

in the same context, an IEC61499 simulation platform was developed, which will allow us to explore in 

a more realistic way and close to a real-life industrial production line, our penetration testing modules. 

All tests related to this simulation platform will be reported in the next version of D5.4, namely D5.9, 
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along with any activities carried out in the second phase of T5.4, towards M24. 

On the other hand, some initial work and development on the hypothesis testing module has already 

been carried out and will be reported in section 6. In the second phase of T5.4 and in the context of 

the deliverable D5.9, all advancements and tests related to hypothesis testing will also be reported.  

All in all, based on the Grant Agreement (GA) [37], task T5.4 aims to fulfill the following objectives: 

 To implement diagnostic plugins that will provide cybersecurity awareness and decision 

making in CPSoS 

 To perform security risk assessment & threat modelling of the deployed CPSoS 

 To validate the stability and communication of a secure CPSoS architecture from a design 

perspective 

 To identify possible vulnerabilities of the main technologies & devices deployed in Zero-

SWARM and trials  

 To implement pen tests for verification of the secure configuration of the deployed CPSoS 

 To allow the system operator to examine the effect of applying different countermeasures for 

the CPSoS vulnerabilities identified 

To a certain point, the above-mentioned objectives are in the process of being validated in this first 

phase of the project, as described in this document, but will be totally fulfilled by the end of this task. 

As someone can understand from the objectives, the majority of the work has been concentrated on 

the penetration testing activities, but, of course, the hypothesis testing activities have not been 

underestimated. 

2 Connection with the relative tasks and deliverables 

Deliverable D5.4 - Penetration and hypothesis testing diagnostic plugins is the first technical 

cybersecurity document of a series of four deliverables, in the scope of tasks T5.4 and T5.5. Due to the 

nature of this task, the cybersecurity activities are horizontally placed within the project, covering the 

cybersecurity aspects of nearly the whole project. For this reason, D5.4 is directly connected with a 

series of other deliverables of the project. More specifically, there is a connection among D5.4 and 

D2.2, D2.3, D5.1 and D5.5. The following sections present briefly the interconnection between these 

deliverables. 

2.1 Connection to Zero-SWARM architecture, T5.1 and use-cases  
The figure below illustrates a zoomed in architecture of the overall CPS structure, following the three-

layer architecture as presented in the official Zero-SWARM deployment view architecture in D2.2 - Eco 

designed architecture, specifications & benchmarking [39]. The architecture presented in this section 

was thoroughly analyzed in D5.1 - Distributed automation and information management [41], 

showcasing all three layers but also extending the architecture in order to represent the IEC 61499 

automation platform (simulation platform), which will be a starting point for the evaluation of the tools 

developed in the context of task T5.4. More specifically, the architecture depicts the different 

communication protocols that will be used for data exchange across the three layers, namely MQTT, 

OPC-UA, Modbus and IEC61499. These protocols will be examined from a cybersecurity perspective to 

understand if they have any vulnerabilities that could jeopardize an industrial production line, if 

compromised. Furthermore, besides any network vulnerabilities, the simulation platform will be 

assessed regarding its applications, its physical security, human factors, etc., as described in section 
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3.1.4. In the scope of WP6, the penetration testing and hypothesis testing modules are planned to be 

validated in the Node scenarios, taking advantage of the already gained knowledge over the testing of 

the modules with the IEC61499 simulation platform.  

 

Figure 1: Zero-SWARM zoomed in CPS structure and connection to T5.4 

2.2 Connection to anomaly detection and countermeasure selection modules 
This section describes the interconnection between the two cybersecurity tasks of the Zero-SWARM 

project, namely T5.4 – Ad-Hoc penetration and hypothesis testing plugins and T5.5 - Anomaly 

detection and countermeasure selection modules. The following figure depicts a unified high-level 

workflow, showcasing how all four modules of these cybersecurity tasks (T5.4 – T5.5) interact with 

each other. More specifically, the penetration testing modules (1), having detected vulnerabilities and 

determined the attack surface of a specific CPS, will inform the anomaly detection module (2) about 

possible attack types and vulnerabilities. The next step, the anomaly detection module, is responsible 

for detecting known attacks or anomalous traffic. This information will be fed in the countermeasure 

selection module (3), informing it about ongoing attacks and anomalies. Then, the countermeasure 

selection module will decide the best strategy to handle attacks and anomalies, based on a predefined 

list of actions, regarding the software or hardware components attacked. The last step includes the 

update of the hypothesis testing module (4), with the output of the countermeasure selection module. 

In other words, the aforementioned module will inform the hypothesis testing module about the 

decided strategy and the predefined list of actions based on the component attacked. Last but not 

least, the hypothesis testing module will compare different mitigation strategies based on static KPIs 

and statistical difference, allowing the system operator to examine how the application of different 

countermeasures will affect the CPSoS. More information on the anomaly detection and 

countermeasure selection modules will be presented thoroughly in D5.5 - Anomaly detection and 

countermeasure selection tools. 
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Figure 2: Unified high-level T5.4 - T5.5 interconnections 

3 Introduction to penetration and hypothesis testing 

3.1 Penetration testing 
3.1.1 Penetration testing background 

Penetration Testing (PT) has emerged as a fundamental practice within the realm of cybersecurity over 

the past decade. It entails the deliberate and controlled execution of an authentic attack on a digital 

asset, which may encompass computer systems, industrial systems, Internet of Things (IoT) devices, 

software applications or networks, with the primary objective of scrutinizing their security posture. 

The process of PT is meticulously structured into a series of sequential tasks, enabling a systematic and 

comprehensive evaluation of the target system's security. This often includes the proactive 

identification of vulnerabilities and the execution of a predetermined set of actions to assess the 

potential for compromise by employing exploits against these identified vulnerabilities. In practice, PT 

generally includes six process phases, which are depicted in Figure 3, but they can also vary from case 

to case. The pre-engagement interactions phase sets the foundation for a successful penetration test 

by ensuring that both the client and the testing team have a clear understanding of the scope, 

objectives, and rules governing the engagement. It helps establish trust and transparency between all 

parties involved, which is essential for a smooth and effective penetration testing process [27][28][29]. 

 

Figure 3: Penetration testing process phases 

3.1.1.1 Step 1: Pre-Engagement Interaction 

This first pre-phase called pre-engagement interactions in penetration testing is a crucial initial stage 

in the overall penetration testing process. It involves a series of activities and communications 

between the penetration testing team and the client or organization that has requested the 
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penetration tests. Below, some key aspects and considerations can be found, related to this pre-phase: 

 Client engagement: The process typically begins with the client or organization expressing 

their intent to conduct a penetration test. This could be driven by regulatory requirements, 

security concerns or a proactive effort to assess and improve their security posture. 

 Scope definition: The penetration testing team works closely with the client to define the 

scope of the engagement. This involves identifying the specific systems, networks, 

applications, or assets that will be tested. It is crucial to establish clear boundaries to avoid 

unintended consequences or disruptions during the testing. 

 Rules of engagement: During this phase, the rules of engagement are established. These rules 

outline what is allowed and what is not allowed during the penetration test. For instance, the 

team may agree on whether they can attempt to exploit vulnerabilities, use social engineering 

techniques, or simulate insider threats. 

 Legal and Compliance Considerations: Ensuring that the penetration test complies with all 

relevant laws and regulations is essential. Pre-Engagement Interactions may involve legal 

reviews and documentation to protect both the client and the testing team from legal 

repercussions. 

 Communication protocols: Establishing clear lines of communication is vital. The client and 

the testing team need to agree on how and when they will exchange information, updates, 

and findings throughout the engagement. 

 Scheduling and timing: The timing of the penetration test is determined during this phase. It 

is essential to coordinate the testing schedule with the client to minimize disruptions to their 

operations. 

 Resource and personnel allocation: Identifying the resources and personnel needed for the 

engagement is part of pre-engagement planning. This includes specifying who from the client's 

side will be involved, as well as assembling the penetration testing team with the required 

skills and expertise. 

 Documentation: Detailed documentation is essential. This includes creating a formal 

penetration testing agreement or contract that outlines all the terms and conditions, as well 

as objectives and expectations for the engagement. 

 Preparation: Before the actual testing begins, both the client and the testing team need to 

ensure that all necessary preparations are in place. This may involve setting up test 

environments, acquiring any required tools or resources, and conducting any training or 

briefings for the personnel involved. 

3.1.1.2 Step 2: Reconnaissance 

The reconnaissance phase is one of the critical stages in the process of penetration testing. It involves 

gathering information about the target system, network or organization to comprehensively 

understand the environment before initiating any active attacks. This phase is often considered the 

first step in the penetration testing process and is primarily focused on passive information gathering. 

This step 2 phase provides penetration testers with a solid foundation of knowledge about the target 

environment, which they can use to plan and execute subsequent phases of testing. By identifying 

potential vulnerabilities and weaknesses early in the process, penetration testers can help 

organizations strengthen their security defenses and mitigate potential risks. Certain key aspects of 

the reconnaissance phase are listed below: 
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 Passive information gathering: Reconnaissance is primarily a passive phase, meaning that the 

penetration testing team collects information without directly interacting with the target 

system. This helps maintain stealth and avoid triggering alarms or security measures. 

 Objectives: The primary objectives of the reconnaissance phase include identifying potential 

targets, understanding the target's infrastructure, discovering vulnerabilities, and gathering 

intelligence about the target organization's security posture. 

 Information sources: Information is collected from various sources, including public records, 

online databases, social media, domain registration records, search engines, and public 

websites. The goal is to find publicly available information that could be useful for identifying 

potential weaknesses. 

 Types of reconnaissance: 

o Passive reconnaissance: This involves collecting information that is publicly available 

or can be obtained without directly interacting with the target. This might include 

identifying IP addresses, domain names, email addresses, and employee names. 

o Active reconnaissance: While not as discreet as passive reconnaissance, active 

reconnaissance involves scanning and probing the target's network to discover open 

ports, services, and potentially vulnerable systems. It is a more intrusive phase and 

can sometimes be detected by network security tools. 

 Tools and techniques: Penetration testers often use a variety of tools and techniques for 

reconnaissance, such as network scanning tools (e.g., Nmap), domain name lookup tools (e.g., 

WHOIS), search engines, social engineering tactics (e.g., phishing for information), and online 

forums or communities where information about the target organization may be discussed. 

 Information collected: During reconnaissance, testers aim to gather information about the 

target's IP addresses, network architecture, domain names, subdomains, email addresses, 

employee names and roles, software and hardware used, and potentially any known 

vulnerabilities associated with the identified systems. 

 Documentation: Thorough documentation of all collected information is crucial. This 

documentation will serve as the foundation for subsequent phases of penetration testing, 

helping testers make informed decisions about attack vectors and potential vulnerabilities. 

 Ethical considerations: Reconnaissance activities must always be conducted ethically and 

within the bounds of any legal agreements or permissions obtained from the client. Engaging 

in unauthorized or malicious information gathering is not only unethical but also illegal. 

3.1.1.3 Step 3: Threat Modelling & Vulnerability Identification 

The threat modelling and vulnerability identification phase is a significant step in the overall process, 

as well. It involves systematic analysis and assessment of the target system, network or application to 

identify potential threats, vulnerabilities and weaknesses. This phase is essential for understanding the 

security landscape of the target and determining where attacks might be most effective. These are the 

main characteristics associated with this step: 

 Objective: The primary objective of the Threat Modeling & Vulnerability Identification phase 

is to identify and document potential vulnerabilities and threats that attackers could exploit. 

This includes both known vulnerabilities and those that may not have been previously 

recognized. 

 Methodical approach: Penetration testers use a systematic and structured approach to assess 

the target. This often involves reviewing architecture diagrams, network configurations, 
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application source code (if available), and other relevant documentation to understand how 

the target is designed and how it functions. 

 Threat modeling: Threat modelling is a technique used to identify potential threats and attack 

vectors. It involves thinking like an attacker and considering various ways in which the target 

could be compromised. Threat modeling helps testers prioritize their efforts by focusing on 

the most critical assets and potential threats. 

 Asset identification: In this phase, penetration testers identify and classify the assets within 

the target environment. Assets can include data, systems, applications, hardware, and any 

other components that are essential to the organization. 

 Vulnerability assessment: Testers actively search for vulnerabilities within the target. This may 

involve scanning for open ports, services, and known vulnerabilities using tools like 

vulnerability scanners or manual testing techniques. Vulnerability assessment may also include 

code review for software applications. 

 Risk assessment: Once vulnerabilities are identified, testers assess their potential impact and 

likelihood of exploitation. This helps prioritize which vulnerabilities should be addressed first, 

considering the potential consequences of a successful attack. Common scales used for risk 

assessment include CVSS (Common Vulnerability Scoring System) or similar frameworks. 

 Documentation: Comprehensive documentation is an essential part of this phase. Testers 

create a detailed list of identified vulnerabilities, their descriptions, their locations and the 

potential risks associated with each asset. This documentation serves as a basis for the 

subsequent exploitation and post-exploitation phases. 

 Reporting: After identifying and assessing vulnerabilities, penetration testers typically create 

a formal report for the client. This report includes a summary of findings, detailed descriptions 

of vulnerabilities, their potential impact on the organization, and recommendations for 

mitigation. 

3.1.1.4 Step 4: Exploitation 

The exploitation phase of penetration testing represents an important step within the assessment 

process. This phase is characterized by active attempts made by the penetration tester to exploit 

identified vulnerabilities within the target system, network or application to be checked. The primary 

objective of this step is to validate the existence and potential impact of the vulnerabilities identified 

in the previous step, simulating real-world attacks to determine whether a malicious user could 

successfully compromise the target. The most important characteristics of this step of penetration 

testing are listed below: 

 Systematic approach: Penetration testers follow a methodical and well-planned approach 

during exploitation. They carefully strategize and execute attacks while adhering to predefined 

rules of engagement and the scope outlined with the client. 

 Active engagement: Unlike the preceding reconnaissance and vulnerability identification 

phases, the Exploitation phase involves active engagement with the target. Testers actively 

seek out weaknesses and security flaws and attempt to leverage them to gain unauthorized 

access or control. 

 Tools and techniques: A variety of tools, scripts, and techniques are employed by penetration 

testers during exploitation. These tools are often selected based on the specific vulnerabilities 

and attack vectors identified earlier in the assessment process. 
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 Privilege escalation: Initial exploitation efforts may grant testers limited access to the target. 

During this phase, they may employ privilege escalation techniques to gain higher levels of 

control over the system, increasing the potential impact of their actions. 

 Documentation: Detailed documentation is an integral part of the exploitation phase. Testers 

meticulously record every step of the attack process, including the tools used, commands 

executed and outcomes achieved. This documentation serves as critical evidence and supports 

comprehensive reporting to the client. 

 Client communication: Effective communication with the client may continue during this 

phase to provide progress updates and seek guidance in case of unexpected challenges. 

Maintaining transparency fosters trust between the testing team and the client. 

3.1.1.5 Step 5: Post-Exploitation, Risk Analysis & Recommendations 

The post-exploitation, risk analysis and recommendations stage of the penetration testing process 

follows the exploitation phase. It involves the systematic analysis of the impact of successful 

exploitation, assessment of risks and the formulation of actionable recommendations to improve 

security. The following listed items depict the key aspects of this stage: 

 Post-exploitation activities: After successfully exploiting vulnerabilities in the target system, 

the penetration tester may engage in post-exploitation activities. These can include 

maintaining control over compromised systems, escalating privileges, exfiltrating sensitive 

data, or exploring the network further. Post-exploitation activities help simulate how an 

attacker might continue to exploit a compromised system. 

 Risk analysis: Once post-exploitation activities are completed, the penetration tester conducts 

a thorough risk analysis. This analysis evaluates the potential consequences of the successful 

exploitation, considering factors such as data exposure, system compromise, business 

disruption, and regulatory compliance violations. The goal is to understand the true impact of 

the vulnerabilities and the potential risks to the organization. 

 Recommendations: Based on the findings from the risk analysis, the penetration tester 

formulates a set of actionable recommendations. These recommendations are designed to 

help the client mitigate the identified vulnerabilities, improve security controls, and enhance 

the overall security posture. Recommendations may include software patching, 

reconfiguration of security settings, strengthening access controls, or employee training. 

 Prioritization: Recommendations are typically prioritized based on the severity of the 

vulnerabilities and the potential impact on the organization. High-risk vulnerabilities that could 

lead to severe consequences are often addressed first. This prioritization allows the client to 

allocate resources efficiently to mitigate the most critical issues. 

 Documentation: Detailed documentation of post-exploitation activities, risk analysis and 

recommendations, is crucial. The penetration tester provides a comprehensive report that 

includes a summary of findings, descriptions of vulnerabilities, their potential impact, and the 

recommended  

 Mitigation plan: Following the consultation, the client develops a mitigation plan based on the 

recommendations provided by the penetration tester. This plan outlines the specific steps and 

timelines for addressing the identified vulnerabilities and improving security controls. 

 Reassessment: In some cases, the client may request a follow-up penetration test to verify 

that the recommended security improvements have been effectively implemented and the 

vulnerabilities have been remediated. 
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3.1.1.6 Step 6: Reporting 

The reporting stage is the final step of penetration testing, where the results and findings of the 

assessment are documented and communicated to the relevant stakeholders. This step is essential for 

ensuring that vulnerabilities and security weaknesses are properly addressed and that the organization 

can improve its security posture. Some of the main elements of the reporting phase in the context of 

penetration testing are listed below: 

 Report compilation: Penetration testers compile all the data, evidence, and findings collected 

during the testing phase into a comprehensive report. This report typically includes detailed 

information about the vulnerabilities discovered, their severity, and how they can be 

exploited. 

 Executive Summary: An executive summary is often included at the beginning of the report. It 

provides a high-level overview of the penetration test's objectives, methodology, key findings 

and recommendations. This section is designed for non-technical stakeholders, such as 

executives and managers. 

 Technical details: The main body of the report contains detailed technical information about 

each vulnerability or security issue identified. This includes the affected systems, potential 

impact, and a step-by-step explanation of how the penetration tester was able to exploit the 

vulnerability. 

 Recommendations: Penetration testers provide actionable recommendations for mitigating 

the identified vulnerabilities and improving security. These recommendations are often 

prioritized based on risk and potential impact to help organizations address the most critical 

issues first. 

 Remediation guidance: In addition to recommendations, penetration testers may offer advice 

on how to remediate the vulnerabilities. This guidance may include technical steps, best 

practices, or suggested configurations to improve security. 

 Evidence & documentation: The report should include evidence to support the findings, such 

as screenshots, logs and any other relevant documentation. This helps ensure the credibility 

of the report and provides a clear record of the vulnerabilities. 

 Reporting format: The format of the report may vary depending on the organization's 

preferences and requirements. It can be presented in a written document, a presentation, or 

a combination of both. Some organizations also request an oral presentation of the findings. 

 Delivery & discussion: The penetration testing team typically delivers the report to the client 

or relevant stakeholders. It's important to schedule a discussion or debriefing session to ensure 

that all findings and recommendations are well understood and can be acted upon effectively. 

 Follow-up: After the report is delivered, the organization should follow up on the 

recommendations and begin the process of remediating the identified vulnerabilities. This may 

involve further testing to validate that the fixes were effective. 

3.1.2 Penetration Testing Approaches 

This section gives a high-level overview of the three penetration testing approaches, as depicted in the 

figure below, which are used to analyze and attack potential assets. This categorization tends to be 

theoretical considering that the actual circumstances are quite different and may demand a 

combination of the approaches listed below (Figure 4), depending on the complexity of the situation 

and the client's requirements. Furthermore, the type and scope of testing tend to be established and 

accepted before the launch of any test and could be revised or extended throughout the Zero-SWARM 
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project's lifetime. 

 

Figure 4:  Differences between the three PT approaches 

3.1.2.1 Black-box approach 

Black box penetration testing is a cybersecurity testing approach where the penetration tester has no 

prior knowledge about the target system or network being assessed. This method simulates the 

perspective of an external attacker who has no insider information about the organization's 

infrastructure. 

3.1.2.2 White-box approach 

White-box penetration testing, also known as clear box testing or transparent box testing, is a 

cybersecurity assessment approach where the tester has full knowledge of the target system or 

network being evaluated. In contrast to black box testing, where the tester has no prior information, 

white box testing provides the tester with complete access to system documentation, source code, 

network diagrams and other relevant details. This approach is mostly used by developers who are 

responsible of assessing a system at the time it is being developed in order to provide a secure-by-

design asset. The white-box approach is the most advanced among the three approaches stated in this 

section, namely the black-box, white-box and grey-box approaches. 

3.1.2.3 Grey-box approach 

The grey box penetration testing approach falls between black box and white box testing in terms of 

information disclosure. In grey box testing, the penetration tester has some limited knowledge about 

the target system or network, but not as much as in white box testing. This approach is designed to 

simulate the perspective of a semi-informed attacker who may have partial insider information. 

3.1.3 Penetration Testing frameworks and methodologies 

Penetration testing frameworks and methodologies offer a structured framework for the preparation, 

execution and documentation of cybersecurity vulnerability assessments. These resources encompass 

a range of activities aimed at establishing robust security methodologies. Below are some well-known 

penetration testing frameworks and standards, based on literature [52]: 

 Open Worldwide Application Security Project (OWASP) 

 Information System Security Assessment Framework (ISSAF) 

 Open-Source Security Testing Methodology Manual (OSSTMM) 

 Building Security In Maturity Model (BSIMM) 

 Penetration Testing Execution Standard (PTES) 

 Metasploit 
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3.1.3.1 OWASP 

The Open Web Application Security Project, commonly known as OWASP, is a globally recognized non-

profit organization dedicated to improving the security of web applications and software. Founded in 

2001, OWASP has become a leading authority in the field of application security, offering a wealth of 

resources, best practices, and tools to assist organizations in identifying and mitigating security 

vulnerabilities in their web applications. Its primary mission is to make web applications and software 

more secure by raising awareness about security risks and providing guidance on best practices. The 

organization operates under the principles of openness, community collaboration and vendor 

neutrality. Moreover, OWASP's contributions have had a significant impact on the field of 

cybersecurity. Its resources and guidelines are widely used by organizations to secure their web 

applications and its annual OWASP Top Ten list serves as a reference for identifying and addressing the 

most critical security risks. Concluding, OWASP continues to empower organizations and individuals to 

build and maintain secure web applications in an ever-evolving threat landscape [30][31]. 

3.1.3.2 ISSAF 

The Information System Security Assessment Framework (ISSAF) is a concise and thoroughly evaluated 

penetration testing guide, supported by the Open Information Systems Security Group (OISSG). Even 

though this methodology is not updated anymore, it is used, nowadays, for its comprehensive nature. 

More specifically, it separates information system security assessments into categories and specifies 

particular requirements for evaluating and validating each of these categories. The main objective is 

to deliver useful information into evaluations of security, which correspond to real-world events. ISSAF 

is a core tool for satisfying an organization's security evaluation requirements and may additionally be 

utilized as a reference for handling a variety of other information security concerns. 

3.1.3.3 OSSTMM 

OSSTMM stands for Open-Source Security Testing Methodology Manual. It is a peer-reviewed 

methodology for security testing, maintained by the Institute for Security and Open Methodologies 

(ISECOM). The OSSTMM is a comprehensive methodology that covers all aspects of security testing, 

from planning and scoping to reporting and remediation. It is divided into five channels, as listed 

below: 

 Physical security: This channel covers the physical security of an organization, such as its 

buildings, perimeter, and assets. 

 Wireless communications: This channel covers the security of wireless networks, such as Wi-

Fi and Bluetooth. 

 Telecommunications: This channel covers the security of telecommunications systems, such 

as phone networks and data networks. 

 Data networks: This channel covers the security of data networks, such as LANs and WANs. 

 Human factors: This channel covers the security of human factors, such as social engineering 

and phishing. 

3.1.3.4 BSIMM 

BSIMM stands for Building Security In Maturity Model and is a data-driven model that provides a 

baseline of observed activities for software security initiatives. The BSIMM is based on a survey of over 

200 organizations and identifies 12 practices that are common to successful software security 

initiatives. The BSIMM can be used by organizations to assess their current software security posture 

and to identify areas for improvement. It can also be used to benchmark an organization's software 

security program against other organizations. These practices are organized into four domains: 
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 Governance: Practices that help organize, manage, and measure a software security initiative. 

 Intelligence: Practices that help organizations gather and analyze security intelligence. 

 Secure Software Development Lifecycle (SSDL) touchpoints: Practices that are implemented 

at different stages of the SDLC to improve security. 

 Deployment: Practices that are implemented to secure software after it is deployed. 

3.1.3.5 PTES 

A group of information security specialists from many different industries developed and continue to 

update the Penetration Testing Execution Standard, also known simply as PTES. PTES defines a 

minimum standard for a penetration test, spanning from the initial client-tester negotiation to the 

contents of the report. PTES aims to raise the threshold for penetration testing quality by offering 

exceptional levels of guidance. Organizations have a better understanding of the services they are 

paying for because of to the standardization of penetration testing guidelines, which also provides 

penetration testers with precise instructions concerning what they are supposed to do during a 

penetration test. 

3.1.3.6 Metasploit 

Metasploit is a penetration testing framework designed to help security professionals find and exploit 

vulnerabilities in computer systems, networks and IoT devices. It is a powerful tool that can be used to 

simulate real-world attacks, helping organizations to identify and mitigate security risks. The 

Metasploit framework is modular, meaning that it is made up of a collection of individual tools that 

can be combined to create custom attacks. This makes it a very flexible tool that can be used to test a 

wide range of vulnerabilities. In 2003, Metasploit was officially launched as an open-source project but 

was acquired in 2009 by Rapid7, a company that is now responsible for its development and support. 

It is regularly updated with new modules and features, ensuring that it remains up-to-date with the 

latest security threats. 

3.1.4 Overview of CPSoS penetration testing  

Cyber-Physical Systems of Systems (CPSoS) represent complex interconnected systems that combine 

cyber elements (software, networks, data) with physical components (sensors, actuators, hardware). 

Ensuring the security of CPSoS is critical due to their real-world impact on industries like industrial 

automation, transportation and critical infrastructure. Penetration testing for CPSoS requires 

specialized approaches to address the unique challenges they pose. As a proposed overview of 

different penetration testing approaches for CPSoS based on [7][8][9][11] different phases of testing 

can be considered. 

 Network Penetration Testing: 

o Focuses on the communication networks within the CPSoS 

o Identifies vulnerabilities in network protocols, routers, switches, firewalls, and other 

network components 

o Tests for unauthorized access, data leakage, and potential network-level attacks 

 Embedded System Penetration Testing: 

o Targets the physical devices and components embedded in CPSoS 

o Aims to identify vulnerabilities in firmware, hardware, and communication interfaces 

of sensors, actuators, and controllers 

o Evaluates potential risks from compromised embedded systems 

 Application Penetration Testing:  

o Concentrates on the software applications running in the CPSoS 
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o Identifies vulnerabilities in web and mobile applications, including authentication 

flaws, input validation issues, and insecure APIs 

o Assesses the potential impact of application-level attacks on the CPSoS 

 Fuzzing Testing:  

o Utilizes automated input generation to identify vulnerabilities in software components 

of the CPSoS. 

o Sends malformed or unexpected inputs to applications and systems to trigger crashes, 

errors, or unexpected behaviours. 

o Helps uncover memory-related vulnerabilities, input validation issues, and potential 

points of compromise [35]. 

 Physical Security Penetration Testing: 

o Assesses the physical aspects of the CPSoS, including access controls, surveillance 

systems, and physical barriers 

o Tests the effectiveness of physical security measures in preventing unauthorized 

access to critical components 

 Supply Chain Penetration Testing: 

o Evaluates the security of third-party components and software integrated into the 

CPSoS 

o Aims to identify vulnerabilities and potential backdoors introduced through the supply 

chain 

 Human Factors Testing: 

o Assesses the impact of human interactions on CPSoS security 

o Evaluates the effectiveness of security training, social engineering risks, and insider 

threats within the CPSoS environment 

 Resilience Testing:  

o Focuses on the CPSoS ability to recover from cyberattacks 

o Tests how well the system can continue operating despite ongoing attacks or 

disruptions 

 SCADA System Penetration Testing: 

o Specific to CPSoS used in industrial control systems (SCADA systems) 

o Assesses the security of industrial automation and control components, including 

PLCs, HMIs, and communication protocols 

 IoT (Internet of Things) Security Testing:  

o Concentrates on IoT devices integrated into the CPSoS 

o Identifies vulnerabilities in IoT hardware, firmware, and communication protocols that 

might impact the CPSoS 

 OPC-UA Penetration Testing:  

o Focuses on the security of OPC-UA communication protocols and implementations 

o Identifies vulnerabilities in OPC-UA servers and clients, ensuring secure data exchange 

and preventing unauthorized access 

Each of these approaches plays a vital role in ensuring the security and resilience of Cyber-Physical 

Systems of Systems (CPSoS). The inclusion of fuzzing testing helps to address potential vulnerabilities 

in software components by simulating real-world attacks with unexpected inputs. 



 

Project funded by Horizon Europe, Grant Agreement #101057083 25 

 

3.1.5 State-of-the-art for automated Penetration Testing 

During the last decade, cyber-security firms and security systems developers have been heavily 

focusing on producing automated [38] and semi-automated PT frameworks and systems aiming to 

facilitate the work of network penetration testers and make the assessment of network security more 

accessible to non-experts. Multiple systems are available for public use varying from free and open 

source to more costly products. Popular products used in PT communities include Core- Impact, 

Nexpose, Nessus, Qualys, Tenable, Immunity Canvas and Metasploit. The main contribution offered by 

these systems compared with the traditional security and vulnerabilities scanners such as Nessus, is 

their functionalities (planning, scanning, and exploiting) along with simplicity and flexibility of use 

(automation of certain tasks, visualization, reporting). Yet, the offered automation (mainly related to 

the planning phase of the practice) remains limited to the planning of the practice, the organization of 

the tasks and the optimization/visualization and the automated reporting (phase 4). Nevertheless, the 

heart of the PT practice was often neglected or poorly exploited. In fact, determining the exploitable 

vulnerabilities and launching the relevant exploits, digging inside, and pivoting to create a new vector 

of attack is undoubtedly the most challenging part. The difficulty itself lies on the current PT systems 

which have radically changed and evolved and have become more complex, covering new attack 

vectors and shipping increasing numbers of exploits and information gathering modules. Thus, the 

problem of efficiency has emerged and controlling alike framework successfully along with maintaining 

efficiency, is indeed the most important challenge. 

3.1.5.1 Fuzzing State of the Art 

Fuzzing is an automatic testing technique consisting of generating various inputs to break the system. 

To do this, the system's output (System Under Test (SUT)) is monitored to detect any behaviour 

different from the usual one. This technique is very popular for finding 0 days since it detects errors 

never detected before without influencing the system or knowing its operation in depth [1]. 

The fuzzing inputs are specially designed to trigger unexpected behaviours in the SUT and allow the 

finding of errors such as bad memory violations, assertion violations, incorrect handling of nulls, locks, 

infinite loops, undefined behaviours or incorrect management of other resources. Compared to other 

vulnerability hunting strategies, such as code inspection or reverse engineering, fuzzing has the 

advantage that it can be done on a large scale and unattended since the fuzzing process is often 

automated. Today, there are a large number of fuzzers, and each of them has its characteristics. 

Therefore, there are different methods to classify fuzzers [10]. 

Type 

Depending on the information that the fuzzer needs, it can be classified into the following three 

approaches, as already described in section 3.1.2: 

 Black box fuzzer (B): The first fuzzers were of this type and did not need to know the system's 

internals or the source code. Although these fuzzers initially worked completely randomly, 

today, they use techniques such as grammar to generate new entries. In this type of fuzzers, 

it is difficult to determine the code coverage achieved. 

 White box fuzzier (W): In this case, the fuzzier needs to access the source code or binary and 

know the internal operation; they can also use techniques such as instrumentation that involve 

making changes. Therefore, before running these fuzzers, it is necessary to perform a system 
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scan to detect their characteristics. Guided coverage and dynamic symbolic analysis are 

commonly used in these fuzzers. 

 Gray box fuzzer (G): These fuzzers need certain information to work correctly. Usually, this 

information is used to carry out the instrumentation. Nowadays, it is the most used technique 

since without having exhaustive information about the system that is being tested, it obtains 

better results [2]. 

 

Figure 5: Example of the scope of the IEC 62443 standard documents 

Generation of inputs 

Fuzzers can also be classified depending on how they generate new inputs into two categories: 

 Mutational (M): fuzzers are of this type when they generate new entries starting from those 

previously generated and performing different operations on them. This technique works very 

well when the inputs are complex, but they need to receive feedback from the system to work 

correctly. 

 Generational (G): To generate the new entries, the SUT specifications are based, so it is 

necessary to know the syntax of the entries and the protocol used. It cannot be used with SUTs 

that are not precisely known but generate more accurate inputs than mutational ones. 

Intelligence 

Another way of classifying the fuzzers could be by taking into account whether the output of the 

system is fed back to generate the new inputs or not: 

 Smart (S): These are the fuzzers that adapt the generation of inputs to the system's output; 

that is, they use the feedback technique to generate the new inputs. 

 Dumb (D): These fuzzers do not use system output information; they execute faster than the 

Smart type but tend to be less effective in finding vulnerabilities. 

Fuzzing technique 

Fuzzers today use various techniques to improve the search for vulnerabilities by making 

improvements in different phases of fuzzing. Some of the most used techniques are Random Mutation 
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(MA), Grammar (GR), Dynamic Symbolic Execution (DS), Dynamic Spot Analysis (DM), Guided Coverage 

(CG), and Programming Algorithms (AP), static analysis (SA), Genetic Algorithms (GA) and Machine 

Learning (ML). 

Target 

Another characteristic to take into account when selecting a fuzzer is knowing the type of SUT it 

accepts as files (F), libraries (L), protocols (P), firmware (FW) and applications (A). 

Table 1: Analysis of the characteristics of the fuzzers 

Fuzzer Characteristics 

Type Generation Intelligence Technique Target 

AFL G M S CG/GA F/A 

AFLfast G M S CG/AP F 

AFLgo G M S CG/AP F 

Boofuzz 
(SGPFuzzer: A 
State-Driven Smart 
Graybox Protocol 
Fuzzer for Network 
Protocol 
Implementations, 
2020) 

B G S 

 

 

 

CG P 

Frankestein G M S MA/CG F 

Honggfuzz G M S CG F 

IoTfuzzer B M S DS FW 

Learn&Fuzz G G S ML F 

Libfuzzer G M S CG L 

Peach B M/G S MA/GR F/P 

Smartfuzz W M S DS/CG A 

After analyzing the state of the art of fuzzing and the need to test Open 62541, the fuzzer that best fits 

the requirements is Boofuzz. Boofuzz is a Python-based fuzzer that can be downloaded from GitHub 

[6]. This fuzzer allows testing different protocols, which can be adapted to different scenarios. 

3.2 Hypothesis testing 
In the realm of statistics, hypothesis testing involves the utilization of a data sample to assess the 

credibility of a hypothesis related to the distribution of that particular sample. In the domain of IoT, a 

variety of algorithms rooted in hypothesis testing have found effective application in addressing 

domain-specific challenges.  

Searching literature databases reveals the work performed in this specific area of research. More 

specifically, these techniques have been extensively employed, notably in the domain of attack 

detection. Authors in [42] employ a hypothesis testing algorithm to identify a Link Flooding Attack (LFA) 

within an IoT Network, whereas authors in [43] leverage from the hypothesis testing algorithm to 

enhance a distributed attack detection system. Besides of these aforementioned research papers, 

there are numerous other applications of Hypothesis testing-based algorithms. For instance, they were 

employed to conduct polling for the values of multiple Key Performance Indicators (KPIs) in a fog-based 

IoT sensor network [44], to streamline protocols for authenticating IoT devices [45], and to ensure the 

privacy of Smart Energy Meters [46]. Furthermore, decentralized methods have been proposed to 

optimize energy consumption in IoT sensors [47], safeguarding privacy [48], and maintaining 

robustness in scenarios involving noise and small-scale data sets [49]. 

As far as we know, no other hypothesis-based application in the existing literature assesses various 
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mitigation strategies within an industrial environment. To this end, section 6 will introduce an 

innovative approach to differentiate between distinct sets of mitigation measures. This method 

empowers the system operator to make adjustments to an existing set of mitigation actions and 

observe the resultant effects on the system. To elaborate, Key Performance Indicator (KPI) values 

generated from various mitigation sets are subjected to clustering via a machine learning algorithm. 

Subsequently, the divergence between these clusters is assessed utilizing a p-value, determined 

through a Monte Carlo-based technique known as Statistical Significance of Clustering (SigClust), 

employing Soft Thresholds [50]. 

4 CPSoS security analysis 

To analyse and perform a cybersecurity assessment of different components, one of the first steps is 

to create a threat model. In D2.3, a general threat modelling process is described that also can be 

applied to the systems under the scope of Zero-SWARM. A detailed description of each phase is drafted 

in D2.3 [40]. 

Specifically, in this deliverable, a threat modelling of OPC-UA, Modbus and MQTT protocols, widely 

used in the industry and specifically in the Zero-SWARM project, has been carried out. In the following 

list, a description of each of the threat modelling phases for the specific implementation in Zero-

SWARM has been carried out: 

 Form a team: in this case, the requirements were obtained from the project use cases. 

Analysing the needs of the different use cases, it has been decided to analyse the 

aforementioned three protocols (OPC-UA, Modbus and MQTT). The team composed by a use 

case leader, participants and the cybersecurity expert partner will do a follow up of the 

different steps of the threat modelling in order to validate or update with new requirements. 

 Establish the scope: The scope selected for each system will require identification on the 

industrial physical target, such as OPC-UA, Modbus, MQTT or others. The scope will also 

require the identification of the TCP IP port and other network perimetral conditions to have 

a holistic view of the protocol implementation in the project use cases. 

 Determine likely threats: In our case, for the selected three protocols, we will need to 

determine threats. This will require a vulnerability assessment study and will be carried out 

using penetration testing modules that will be further describe in the section 5. At this moment 

in the project, this is the stage of threat modelling. 

 Rank each threat: Once the vulnerability analysis of the implementation of the three protocols 

has been completed, a ranking of the detected vulnerabilities should be created, depending 

on their criticality. This ranking will allow us to prioritise the mitigation of critical vulnerabilities 

in the first part, leaving the less critical ones for the end. 

 Implement mitigations: In this step, following the ranking done in the previous step, 

vulnerabilities will be mitigated. These can be mitigated through the creation of patches, for 

example, or if the criticality of the vulnerability is very low, the risk can be accepted and not 

mitigated.  

 Document results: Once the entire threat modelling process has been carried out, it should be 

documented so that the same procedure can be followed if the threat reoccurs or to serve as 

an example for modelling new threats. 

4.1 Application of standardized methodologies 
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IEC 62443 is a set of documents covering the cybersecurity needs for a complete solution in the field 

of industrial automation and control systems. Figure 6 represents the sphere of influence of each of 

the documents within a complete solution. 

 

Figure 6: Example of the scope of the IEC 62443 standard documents 

The figure shows three different roles: product supplier, system integrator and asset owner: 

 A supplier of a product provides a component that must be integrated into a solution. IEC 
62443-4-1 acts as a guide for suppliers to create industrial components that are cyber-safe. 
These components should adhere to specific technical cyber security obligations highlighted 
in IEC 62443-4-2. Implementing these requirements would ensure that products configured 
for integration into a complete industrial system comply with cyber safety obligations. 

 The integration is carried out by the system integrator by what is indicated in the document 
IEC 62443-2-4 and IEC 62443-3-2, where it must be considered that there may be a multitude 
of products. 

 Finally, the asset owner is responsible for the system's operation in accordance with what is 
indicated in the documents IEC 62443-2-1 and IEC 62443-2-4. 

In the context of the project, two aspects are especially relevant: the supply chain, which is 

fundamental in two stages: 

 Development stage. At this stage, the component manufacturer is in the middle of the supply 
chain and must control all the elements integrated internally/externally. To do this, the ISO/IEC 
62443-4-1 standard in Practice 1 contemplates this type of situation in SM-9: 

o SM-9: Security requirements for externally provided components. This process should 
ensure that supply chain security is addressed with security best practices, including 
making updates, deployment guides, and the vendor's ability to respond when new 
vulnerabilities are discovered. Security in this process applies in turn to the provider's 
products that are used by the development team if they meet some of the following 
characteristics: 

 Degree to which the product conforms to the security context. 

 Degree of rigor applied to the implementation of the product. 

 Degree of verification and validation of the security of the component. 
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 Mechanisms for receiving and monitoring security incidents. 

 Vulnerabilities identification 

 Presence of sufficient security documentation. 

 Degree of support of the product by the provider. 
 

Secondly, and associated with the role of component provider, the IEC 62443-4-1 standard in Practice 

5 contemplates the identification of vulnerabilities, where it is specified that fuzzing is necessary: 

o SVV-3: Vulnerability testing. There must be a process focused on identifying and 
detecting vulnerabilities in the product. This test must include: 

 Test with malformed inputs to detect vulnerabilities such as fuzzing. 

 Analysis of the attack surface to identify possible entry routes. 

 Exploration of known black box vulnerabilities. 

 For compiled software, software composition analysis on all executable 
binaries. 

 Dynamic tests of resource management at runtime. 

4.2 Security by design (OPC-UA, MQTT) 
Security by design is a fundamental consideration in implementing industrial communication systems. 

In addition, security in industrial communication is of vital importance today, especially in the context 

of industrial cybersecurity. Protecting critical systems is very important in a world where automation 

and connectivity are fundamental to the efficient operation of industry. In this paper, we will explore 

how to address security by design through three key points: 

4.2.1 Mapping IEC 62443 – OPC-UA PART 2 SECURITY 

One of the main pillars of security in industrial communication is effectively linking security principles 

between different standards. This is especially important in industrial cybersecurity, where 

interoperability and protection of critical systems are imperative. 

IEC 62443 is an international standard focusing exclusively on cybersecurity in industrial automation 

systems. It provides a robust framework for assessing and mitigating security risks in critical industrial 

environments. On the other hand, OPC-UA is a widely adopted protocol for communication in 

industrial environments, known for its efficiency and scalability. A powerful synergy is achieved using 

IEC 62443 safety principles in OPC-UA. 

This synergy enables consistent implementation of security measures from strong authentication to 

data encryption. These measures are essential to ensure that only authorized devices and users can 

access resources and that sensitive information is kept secure. The connection between IEC 62443 and 

OPC-UA establishes a solid foundation for implementing secure systems in the industry, helping 

protect critical systems and sensitive data. 

4.2.2 OPC 11030 UA Modelling Best Practices 

Security in OPC-UA is not limited to secure data transmission but extends to the efficient and secure 

representation of information in industrial systems. OPC 11030 UA Modelling Best Practices is a 

fundamental guide that provides detailed guidance on effectively modelling data in OPC-UA. Proper 

data modelling ensures efficiency and security in implementing OPC-UA-based systems [13][14]. 
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This resource provides guidelines for defining data types, objects, and variables consistently and 

securely. By following these best practices, organizations can design systems with a data structure that 

is easy to maintain and simultaneously resistant to potential attacks or security breaches. This helps 

ensure data integrity and information confidentiality, crucial factors in industrial environments where 

accuracy and security are priorities [21][22]. 

4.2.3 Modern Protocol: OPC-UA vs MQTT 

Choosing the right communication protocol is a strategic decision in any industrial application. In this 

context, it is essential to consider the differences and advantages between two widely used protocols: 

OPC-UA and MQTT. 

OPC-UA was launched in 2008 to update the original OPC interoperability standard, designed for 

secure and reliable data exchange in industrial automation. OPC is based on a client/server 

architecture, where the OPC server becomes the hardware communication protocol, and any program 

that needs to connect to the hardware becomes the OPC client software. 

However, it is crucial to consider particular challenges before implementing an OPC or OPC-UA-based 

architecture. The most commonly cited is the complexity of implementation, as the OPC-UA 

specification document is 1.240 pages long. In addition, full implementation of OPC-UA can be 

expensive, with high CPU resource requirements, development costs and ongoing support costs. OPC 

is also inflexible and needs help handling the various heterogeneous data structures and devices in 

today's industrial environment. In addition, it has limitations in handling multiple data consumers and 

requires to provide the proper data decoupling needed for a one-to-many approach. 

MQTT, on the other hand, is a transport protocol that originated in 1999. MQTT is a lightweight 

network protocol based on the publish/subscribe (pub/sub) model that allows multiple data 

consumers and is designed for resource-constrained devices and networks with limited bandwidth, 

high latency or low reliability. 

The MQTT specification is simple and easy to implement, with a specification document of 

approximately 80 pages, and can be extended with the Sparkplug specification, which adds another 60 

pages. MQTT is lightweight and flexible, focusing on exception-only reporting and minimizing the data 

footprint. In addition, MQTT is cost-effective, is based on open standards, and provides TCP/IP layer-

level security. 

A significant advantage of MQTT is its growing industry adoption, with multiple vendors natively 

implementing MQTT-Sparkplug in both hardware and software. In addition, leading cloud platforms, 

IoT platforms, edge computing platforms, big data and third-party applications support MQTT. 

Within the Eclipse Tahu project, the Sparkplug specification defines how to use MQTT in real-time 

industrial applications. Sparkplug establishes a standard namespace for MQTT topics, defines the 

payload structure and manages session state for industrial applications, meeting the requirements of 

real-time SCADA implementations. This facilitates the adoption of MQTT in applications that require 

data communication between Operational Technology (OT) and Information Technology (IT), providing 

contextual information that is essential for big data analytics, Machine Learning (ML) and Artificial 

Intelligence (AI). 

Importantly, although OPC-UA and MQTT have different approaches to handling data, they can work 
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together harmoniously in specific scenarios. MQTT can be used to overcome some of the limitations 

and challenges associated with OPC-UA, enabling efficient and secure data communication in Industrial 

Internet of Things (IIoT) environments. 

In summary, A Modern Protocol: OPC-UA vs. MQTT [7] is a valuable guide to help organizations decide 

which communication protocol to use based on their security and efficiency needs in specific industrial 

applications. Understanding the strengths and weaknesses of each protocol is essential to designing 

secure and robust systems. 

5 Penetration testing modules 

5.1 Zero-SWARM penetration testing methodology  
The general background and principles of penetration testing were given in section 3.1, in order to 

concentrate mostly on technical aspects in this section. More specifically, as the Zero-SWARM project 

focuses on CPSoS environments, the penetration testing modules to be developed in task T5.4 will 

focus on these components. Specifically, in this first phase of the project, a fuzzer-based penetration 

test module will be developed for the OPC-UA protocol that is used in the project (implemented with 

Open62541) [5]. In parallel with the development of a fuzzer-based penetration testing module for the 

OPC-UA protocol and in order to examine other well-used industrial communication protocols, a first 

assessment of the Modbus communication protocol has been performed. A simulated industrial 

environment has been set up to evaluate the vulnerabilities of the Modbus protocol in an industrial 

production line. The methodologies used in both cases (OPC-UA, Modbus) will be thoroughly explained 

in the following sections. 

5.1.1 OPC-UA  

The Open Platform Communication Unified Architecture (OPC-UA) is an open communication standard 

that enables communication between industrial machines [3]. It is a protocol for transferring data in 

the form of objects instead of discrete data points. This increases the accessibility of plant data by 

allowing the information stored in a shared object to be reused. OPC-UA also has a service-oriented 

model, improving the platforms' security and interoperability [4]. 

The OPC-UA transport protocol, among other things, offers a reliable and secure communication 

infrastructure, as it manages lost messages, communication between nodes and failures. Security is 

built into OPC-UA and has been a design goal since its inception. On top of the transport layer, a secure 

channel using encryption and digital signatures protects messages from unauthorized alteration and 

eavesdropping. Furthermore, this layer authenticates and authorizes specific instances of OPC-UA 

applications using authentication procedures based on digital certificates. This allows administrators 

to implement granular access control across critical infrastructures. A session connects a client 

application and a server used to exchange information. OPC-UA servers must authenticate and 

authorise users intending to establish client-side sessions. The specification supports three 

mechanisms: username/password combinations, digital certificates, and WS-compliant user tokens 

[23][24][25][26]. 

Open62541 

It implements OPC-UA, making it a machine-to-machine communication protocol for industrial 

automation and widely used in various industries such as manufacturing, energy, and transportation. 

This implementation is done in C, allowing developers to create OPC-UA servers and application clients. 
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This implementation is prepared to be portable, scalable and efficient [3]. 

The Open62541 project is open-source and encourages community contributions with a platform for 

collaboration and enhancements. The entire project is on Github under the Mozilla Public License so 

that developers can use and modify it [4]. 

The project aims to provide a flexible and robust framework for implementing OPC-UA functionality. 

It supports several features of the OPC-UA standard, including different transport protocols (such as 

TCP and HTTPS), security mechanisms (encryption, authentication, and authorization), and a wide 

range of data types. 

Open62541 is an increasingly used project in industrial automation since it is compatible with various 

platforms and follows the OPC-UA standard. 

OPC-UA Fuzzers 

State of the art study of fuzzers details several fuzzers, and each has its characteristics, and the targets 

to which they are directed are also usually different. Therefore, when analyzing fuzzers for testing OPC-

UA systems, it is first necessary to analyze the targets to which they are directed. Those directed to 

files will be unable to test them properly since only coding errors would be detected, not configuration 

errors. Therefore, different fuzzers have been analyzed to see which is most suitable for testing OPC-

UA, specifically Open62541, due to this implementation will be used to test project implementation in 

Zero-SWARM. 

5.1.2 Modbus TCP/IP communication protocol 

Modbus, originally developed in the late 1970s, has cemented its place as one of the most prevalent 

communication protocols in industrial automation and control systems. Its straightforward design and 

ability to operate over a variety of physical media, including serial and Ethernet connections, have 

made it a preferred choice for connecting devices such as Programmable Logic Controllers (PLCs), 

sensors and Human-Machine Interfaces (HMIs). Modbus simplifies the process of acquiring data from 

sensors, controlling actuators and monitoring industrial processes, contributing significantly to the 

efficiency and productivity of industrial systems. 

Modbus encompasses several variants, including Modbus RTU (Remote Terminal Unit), Modbus ASCII, 

and Modbus TCP/IP. Modbus RTU and ASCII primarily operate over serial connections, while Modbus 

TCP/IP uses Ethernet. RTU is known for its binary encoding, making it more efficient for serial 

communication, while ASCII employs ASCII characters for human readability. Modbus TCP/IP, on the 

other hand, is suitable for Ethernet-based networks, offering faster data transfer speeds and broader 

compatibility. 

This communication protocol boasts several key features that make it highly desirable in industrial 

environments. It employs a master-slave architecture, where a master device initiates requests and 

slave devices respond with data. This simplicity facilitates easy integration and troubleshooting. 

Additionally, Modbus supports multiple data types, including discrete inputs, coils, input registers and 

holding registers, making it versatile for various data exchange requirements. Its ability to 

communicate over long distances and its resilience in noisy industrial environments further contribute 

to its popularity. 

On the other hand, while Modbus offers numerous advantages, it is not without limitations. One 

significant drawback is its lack of built-in security features. Traditional Modbus implementations do 
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not include authentication or encryption, which can leave industrial systems vulnerable to 

unauthorized access and cyberattacks. As a result, security measures such as VPNs, firewalls and 

network segmentation are often necessary to protect Modbus-enabled systems from potential 

threats. 

As industrial systems evolve towards the Industrial Internet of Things (IIoT), Modbus continues to play 

a primary role. With the emergence of gateways and converters, Modbus devices can seamlessly 

integrate into IIoT ecosystems, allowing for remote monitoring, predictive maintenance and real-time 

data analysis. Modbus remains a foundational protocol in the transition to more interconnected and 

data-driven industrial processes. 

In summary, the Modbus communication protocol has established itself as a fundamental tool in 

industrial environments, enabling efficient and reliable data exchange among various devices. Its 

simplicity, versatility and widespread adoption continue to make it a cornerstone of industrial 

automation and control systems. However, as cybersecurity concerns grow, it is crucial to implement 

appropriate security measures when deploying Modbus in industrial networks to safeguard against 

potential threats. 

5.2 Vulnerability analysis of CPS 
5.2.1 OPC-UA communication protocol 

OPC-UA (Open Platform Communications Unified Architecture) is a widely used communication 

protocol in industrial automation and control systems. OPC-UA penetration testing involves assessing 

the security of OPC-UA implementations to ensure that they are resilient against potential 

cyberattacks.  An overview of the process: 

 Scope definition: Define the scope of the penetration test, including the OPC-UA servers, 

clients, and related components to be tested. Determine the goals and objectives of the test. 

 Information gathering: Gather information about the target OPC-UA systems, including 

network architecture, communication protocols, OPC-UA endpoints, and versions. 

 Vulnerability analysis: Identify potential vulnerabilities in the OPC-UA implementation. This 

could involve manual analysis of configuration files, network traffic analysis, and the use of 

automated scanning tools. 

 Authentication & authorization testing: Assess the effectiveness of authentication 

mechanisms and access controls within the OPC-UA infrastructure. Verify that only authorized 

users have the appropriate permissions to access resources. 

 Encryption and data integrity: Evaluate the encryption and data integrity mechanisms used in 

OPC-UA communication. Ensure that sensitive information is protected during transmission. 

 Secure communication: Test the implementation's adherence to secure communication 

practices, such as enforcing the use of secure OPC-UA endpoints and disabling insecure 

encryption algorithms. 

 Fuzzing & protocol testing: Utilize fuzzing techniques and specialized OPC-UA protocol testing 

tools to send malformed or unexpected messages to the OPC-UA servers and clients. Monitor 

for crashes, unexpected behaviours, or vulnerabilities triggered by these inputs. 

 Boundary testing: Test the system's behaviour when subjected to boundary conditions, such 

as sending extremely large or small data payloads, to identify potential buffer overflows or 

underflows. 
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 Error handling & resilience testing: Assess how the OPC-UA implementation handles errors, 

exceptions, and unexpected situations. Evaluate the system's resilience against Denial-of-

Service (DoS) attacks. 

 Privilege escalation testing: Attempt to escalate privileges within the OPC-UA environment, 

checking for potential vulnerabilities that could allow an attacker to gain unauthorized access. 

 Reporting: Document all findings, including vulnerabilities, weaknesses, and 

recommendations for remediation. Provide a detailed report to the organization with 

actionable steps to improve the security of their OPC-UA implementation. 

 

Fuzzing Penetration Testing in OPC-UA: 

Fuzzing is a specialized penetration testing technique [9] that involves sending intentionally malformed 

or unexpected inputs to a target system to trigger vulnerabilities and uncover security weaknesses. 

Fuzzing is particularly useful for finding memory-related vulnerabilities like buffer overflows, format 

string vulnerabilities, and more. It can be automated and run continuously to identify new 

vulnerabilities that might emerge as the software evolves over time. 

In the context of OPC-UA, fuzzing testing focuses on identifying vulnerabilities in the OPC-UA 

communication protocol and its implementations: 

 Fuzzing tool selection: Choose or develop a fuzzing tool that is capable of generating invalid 

or unexpected OPC-UA messages and sending them to OPC-UA endpoints. 

 Input generation: Configure the fuzzing tool to generate a variety of inputs, including 

malformed OPC-UA messages, to test different aspects of the protocol. 

 Message parsing and handling: Send the generated inputs to the target OPC-UA server or 

client and observe its behavior. Monitor for crashes, exceptions, unexpected responses, or 

abnormal behaviors. 

 Code coverage analysis: Analyze the code coverage achieved during fuzzing to understand 

which parts of the OPC-UA implementation are exercised by the generated inputs. This helps 

identify untested or potentially vulnerable code paths. 

 Error detection: Identify how well the OPC-UA implementation detects and handles errors 

resulting from the malformed inputs. Look for cases where the system fails to gracefully handle 

unexpected data. 

 Vulnerability identification: If crashes, unexpected behaviors, or other anomalies are 

detected, investigate these issues further to determine if they represent genuine 

vulnerabilities. 

 Reporting: Document the results of the fuzzing testing, including the vulnerabilities found, 

their potential impact, and recommendations for remediation. Provide guidance on improving 

the robustness of the OPC-UA implementation against fuzzing attacks. 

Fuzzing testing in OPC-UA aims to uncover vulnerabilities that might not be easily identifiable through 

traditional testing methods. It helps organizations ensure the reliability and security of their OPC-UA 

communication and minimize the risk of cyberattacks targeting industrial control systems. 

5.2.2 Modbus TCP communication protocol 

While Modbus offers significant advantages in terms of simplicity and efficiency, it is not immune to 

vulnerabilities that can potentially jeopardize the security and integrity of industrial networks. As 
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industries increasingly rely on Modbus for real-time monitoring and control, it becomes imperative to 

provide a vulnerability analysis to identify and address potential security threats. This analysis 

encompasses various aspects, including authentication and encryption challenges, the susceptibility of 

function codes to exploitation, network-based attacks, logging and monitoring limitations, firmware 

and software vulnerabilities, insider threats and the absence of redundancy and failover mechanisms. 

By thoroughly understanding these vulnerabilities and implementing robust security measures, 

organizations can fortify their Modbus-enabled systems against potential risks and ensure the 

continued reliability of critical industrial processes. The following list groups some of the most well-

known vulnerabilities related to Modbus. 

1. Authentication and encryption vulnerabilities: 

Traditional Modbus implementations often lack robust authentication and encryption mechanisms, 

leaving industrial networks vulnerable to unauthorized access and data interception. Attackers can 

exploit this weakness to gain unauthorized control over industrial devices or eavesdrop on sensitive 

data transmissions. To address this vulnerability, organizations should consider implementing secure 

communication channels using technologies like Virtual Private Networks (VPNs) or encryption 

protocols to protect Modbus traffic from unauthorized access and tampering. 

2. Vulnerable Function Codes: 

Modbus function codes, which are used to execute specific actions like reading or writing data to 

registers, can introduce security risks if not adequately protected. Some function codes can be 

exploited by malicious actors to manipulate data or take control of industrial processes. It's crucial to 

implement strict access controls and role-based permissions to restrict the execution of critical 

Modbus function codes to authorized personnel only. Regularly reviewing and updating these access 

permissions is essential to maintaining a secure environment. 

3. Network-based attacks: 

Modbus devices connected to Ethernet networks, especially Modbus TCP/IP, are susceptible to various 

network-based attacks. These attacks can include port scanning, Denial-of-Service (DoS) attacks, and 

intrusion attempts. To mitigate these risks, organizations should consider implementing network 

segmentation, firewalls, and intrusion detection systems to isolate and protect Modbus networks from 

external threats. This helps reduce the attack surface and enhances the security of critical industrial 

systems. 

4. Logging and monitoring challenges: 

Many Modbus implementations lack comprehensive logging and monitoring capabilities, making it 

challenging to detect and respond to security incidents effectively. To address this vulnerability, 

organizations should invest in centralized logging and monitoring solutions that capture and analyze 

Modbus traffic for anomalies or suspicious activities. Real-time alerting can enable security teams to 

respond promptly to potential threats and incidents, enhancing overall security posture. 

5. Firmware and software vulnerabilities: 

Modbus devices and associated software may contain vulnerabilities that can be exploited by attackers 

to compromise the integrity and availability of industrial systems. Regularly applying security patches 

[15] and firmware updates is crucial to mitigate these vulnerabilities. Organizations should also stay 

informed about vendor advisories and follow best practices when deploying and configuring Modbus 

devices to reduce the risk of exploitation. 

6. Insider threats: 
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Insider threats, including employees or contractors with access to Modbus systems, can pose 

significant risks if they misuse their privileges. To address this vulnerability, organizations should 

implement least privilege principles, conduct thorough background checks on personnel, and establish 

proper access controls and auditing to monitor and mitigate insider threats effectively. 

7. Lack of redundancy and failover: 

Many Modbus systems may lack redundancy and failover capabilities, making them susceptible to 

disruptions caused by hardware failures or network outages. Implementing redundancy and failover 

mechanisms can ensure continuous operation of critical Modbus systems in the event of failures, 

enhancing the reliability and resilience of industrial processes. 

5.3 OPC-UA Penetration testing toolset 
Figure 7 shows the general architecture diagram of the Metasploit and Fuzzer components that will be 
part of the module. 

 

Figure 7: Metasploit and Fuzzing modules architecture 

Two main machines can be identified in the system, SRV_Metasploit and SRV_Fuzzer, each playing a 

crucial role in the operation of the environment.  

SRV_Metasploit hosts a number of components essential to our operation. On the one hand, 

Metasploit, a powerful cybersecurity platform, and on the other hand, all the libraries necessary for 

its proper functioning. 

The SRV_Fuzzing machine will be in charge of fuzzing the OPC-UA system. Inside it, the Boofuzz fuzzer 

resides, which is being adapted to discover vulnerabilities and weaknesses in the OPC-UA system. 

However, this machine not only hosts the fuzzer, but also contains the program to run it efficiently and 

accurately. Furthermore, this machine acts as the central communication point with the Metasploit 

module hosted on the SRV_Metasploit machine, ensuring a smooth and coordinated interaction 

between the components. 

5.3.1 Fuzzer 

The main goal of fuzzing is to trigger unhandled exceptions, crashes, or unexpected behaviour that 

might indicate the presence of vulnerabilities [16][17][18][19][20][32][33][34]. The information below 

explains how fuzzing works:  

 Input Generation: Fuzzing involves generating a wide range of input data, which can include 

malformed or unexpected data packets, files, or commands. These inputs are designed to 

stress the target application's input-handling mechanisms.  
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 Input Mutation: Fuzzing tools take the generated inputs and mutate them by modifying 

specific bytes, characters, or structures. This creates a diverse set of inputs to explore different 

code paths. 

 Execution and Monitoring: The mutated inputs are fed into the target application, and the 

application's behavior is closely monitored during execution. The goal is to identify crashes, 

memory leaks, unexpected error messages, or any other signs of vulnerabilities.  

 Coverage Analysis: Some advanced fuzzing tools can also analyze code coverage, identifying 

which parts of the code are executed with the given inputs. This helps testers understand the 

reach of their fuzzing efforts. 

 Corpus Management: Fuzzing tools often maintain a corpus, which is a collection of inputs 

that caused interesting behavior or crashes. Testers can evolve this corpus over time to focus 

on specific code paths or potential vulnerabilities. 

 Triage and Reporting: When a crash or unexpected behavior is discovered, the tester examines 

the issue to determine if it's a legitimate vulnerability. Valid vulnerabilities are documented 

and reported to the development team for remediation. 

 

Figure 8: Phases of the fuzzing process 

Figure 7 shows the fuzzing process designed in Zero-SWARM. First, a preparation phase is carried out 
where the system to be tested and the format of the inputs it executes are identified. This is a phase 
before the execution of the fuzzer. Once this is done, the generation of the input patterns begins; these 
are executed in the system, and their output is monitored and analyzed. This process will be repeated 
repeatedly using the system output as a source of information to generate the new entries. 

5.4 Initial validation tests for the penetration test modules 
5.4.1 OPC-UA simulation testbed 

The complete architecture of the platform that will test the penetration test module has been 
designed. A modular and scalable platform has been designed, i.e. each module will perform a specific 
function, but will be interconnected to operate together. The system consists of the following six 
modules: 

 Telemetry-server: This component will be in charge of capturing traffic during the course of 
the penetration test in order to have the evidence and analyse the data once the penetration 
test is finished. 
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 OPC-UA server: This component is responsible for sending data via the OPC-UA protocol to 
clients. The data to be sent are simulated in this first version of the validation environment. 

 Two OPC-UA clients: OPC-UA clients consume the data sent by the server. 

 Penetration testing module: this module runs the fuzzer that will detect OPC-UA 
vulnerabilities. The penetration testing will be launched using Metasploit 

 

Figure 9: Preliminary penetration testing module validation environment 

Validation test proves: 

 

 

5.4.2 Modbus TCP simulation testbed 

A major obstacle in the field of industrial cybersecurity is the high expenses associated with acquiring 

the necessary devices and software licenses for gaining hands-on experience in operating OT systems 

and procedures. Virtualization emerges as a valuable solution to surmount this hindrance, allowing 

individuals to familiarize themselves with the intricacies of ICS protocols and features at a 

comparatively modest initial expense. 
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Figure 10: Physical architectural diagram of simulated environment 

As illustrated in Figure 10, the simulated industrial environment comprises several components. All of 

these components were installed on a Windows 11 host machine with the following specifications: 

Intel Core i5-6600 CPU @ 3.30 GHz, 40GB RAM, and 2x 1TB SSD storage. These components were 

deployed either as Virtual Machines (VMs) or directly installed on the host. 

 pfSense: Software for simulating the network equipment 

 SCADABR: Software for simulating the HMI 

 OpenPLC: Software for simulating the PLC 

 OpenPLC Editor: Complementary software in order to program the PLC activities   

 Factory IO: Software for simulating the RTU (driver) and the sensors & actuators (scene) 

 Kali Linux: Operating system simulating the malicious actions against the Modbus TCP 

simulation environment 

pfSense 

pfSense is a widely used open-source firewall and routing software built on the FreeBSD operating 

system. Its origins trace back to 2004 when it emerged as a fork of the m0n0wall project. Over the 

years, pfSense has evolved into a versatile and powerful solution, making it a popular choice in the 

realm of network security and management. Widely known for its adaptability and scalability, pfSense 

caters to the diverse networking needs of businesses, educational institutions and individuals seeking 

to bolster the security and efficiency of their network infrastructure. 

At its core, pfSense operates as a firewall and router, delivering critical services such as Network 

Address Translation (NAT), VPN support or traffic shaping. What sets pfSense apart is its user-friendly 

web-based interface, designed to give accessibility to users to take advantage of the majority of its 

capabilities. This feature empowers administrators to efficiently manage network traffic, allowing for 

the implementation of Quality of Service (QoS) policies to optimize bandwidth allocation and ensure 

that essential applications receive the requisite resources. Furthermore, pfSense's strength lies in its 

extensibility, boasting a robust package system that enables users to enhance its capabilities with 

additional functionalities. These can include intrusion detection and prevention systems (IDS/IPS), 

content filtering and proxy services. This flexibility and the wealth of features make pfSense a 

formidable choice for those seeking a versatile and powerful network security and routing solution. 

SCADABR 
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SCADABR is a robust and highly adaptable open-source Supervisory Control and Data Acquisition 

(SCADA) system. It is a valuable tool for industries requiring real-time monitoring and control of their 

processes and equipment. Renowned for its web-based interface, proficiency in historical data 

management and extensive customization features, SCADABR has garnered popularity among 

organizations seeking cost-effective and versatile SCADA solutions. This SCADA system operates within 

a dedicated Ubuntu Server Virtual Machine (VM) and establishes a virtual interface connection through 

pfSense. This meticulously configured setup ensures both efficient and secure network connectivity, 

enabling comprehensive monitoring and control capabilities for industrial processes and equipment. 

In this current setup of the industrial testbed, SCADABR will not be used since no Human Machine 

Interface (HMI) was required. 

OpenPLC 

OpenPLC stands as a versatile and open-source Programmable Logic Controller (PLC) platform, 

extending the capability to design, simulate and deploy industrial automation solutions. Its versatility 

lies in its compatibility with diverse hardware platforms, programming languages and communication 

protocols. Combined with its simulation capabilities, OpenPLC emerges as an invaluable resource for 

both industrial automation engineers and enthusiasts alike, offering a cost-effective and highly 

customizable PLC solution. This platform operates seamlessly within an Ubuntu Server VM, 

establishing a connection through the same network interface created with pfSense. This strategic 

network configuration ensures efficient communication among pfSense, SCADABR and OpenPLC, 

fostering a cohesive ecosystem for industrial automation management and control. 

OpenPLC Editor 

The OpenPLC Editor is a software tool that functions as an Integrated Development Environment (IDE), 

specifically tailored for the creation and editing of control logic programs designed for the OpenPLC 

platform. This application is rich in features, offering a wide range of capabilities aimed at streamlining 

the development, testing and management of control logic programs. By simplifying the design and 

deployment of control systems, the OpenPLC Editor emerges as an invaluable resource for industrial 

automation engineers and developers who work with OpenPLC. 

It's important to note that the OpenPLC Editor operates directly on the host machine, rather than 

within a VM. It serves as a complementary tool to the OpenPLC platform. The output files this editor 

generates are subsequently loaded onto OpenPLC to program and execute processes on the PLCs. 

Notably, OpenPLC supports multiple programming languages, including Ladder Logic, Structured Text, 

Instruction List, Function Block Diagram and Sequential Function Chart, all of which adhere to the IEC 

61131-3 standard. This flexibility accommodates diverse programming needs within the realm of 

industrial automation. 

Factory IO 

Factory IO is a robust and interactive simulation software specifically designed for educational and 

training applications within the area of industrial automation and control systems. Its primary function 

is to offer a virtual environment that empowers users to conceptualize, experiment with and validate 

a multitude of industrial automation scenarios, all without the requirement for physical hardware. 

Factory IO is a commercial software, providing a variety of subscription plans to cater to different user 

needs. It is installed directly on the host machine and leverages the pfSense network interface, 

facilitating direct communication with the other interconnected components. This seamless 



 

Project funded by Horizon Europe, Grant Agreement #101057083 42 

integration enhances its utility in creating comprehensive and immersive industrial automation 

simulations for educational and training purposes. 

Kali Linux 

Kali Linux stands out as a potent and widely adopted Linux distribution, meticulously designed to cater 

to the needs of cybersecurity professionals and enthusiasts. Renowned for its comprehensive toolkit, 

frequent updates and robust community backing, Kali Linux serves as an indispensable asset for 

individuals engaged in ethical hacking, penetration testing or cybersecurity evaluations. In the context 

of this task, the Kali Linux operating system is deployed within a distinct VM, enabling seamless 

communication with other VMs through the established network interface. This configuration ensures 

that Kali Linux remains a versatile and essential tool for conducting various cybersecurity tasks and 

assessments. 

 

Figure 11: Simulated industrial environment showcasing the interconnections of all tools 

Figure 11 illustrates the previously mentioned tools of which the industrial Modbus TCP testbed 

consists of. As seen, pfSense, SCADABR, OpenPLC and Kali Linux are independent VMs operating inside 

the same network, created by pfSense. Factory IO runs independently on the host machine, allowing 

the seamless Modbus TCP connection packet flow between OpenPLC and Factory IO. A screenshot of 

the scene designed in Factory IO can be found in the next figure, depicting two production lines that 

lead to two grippers, “baking” the product and then through a common industrial belt is lead the 

products to the end of the production line. This is only a very simple industrial scenario, showcasing 

the Modbus TCP communication between a PLC and a Remote Terminal Unit (RTU). This allows us to 

understand how Modbus TCP works and allows us to further examine the cybersecurity of industrial 

Modbus TCP communications. 

5.4.2.1 Modbus TCP simulation testbed results 

The main focus in this first phase of task T5.4, regarding Modbus penetration testing, includes mainly 

the first step of penetration testing, namely the reconnaissance phase – or information gathering. It is 

considered to be the most important one, as it provides us with important information that will allow 

us to map the production environment and its actions, in order to formulate and execute a precise 

attack. In most of the cases the attacker will probably make use of a hacking OS, such as Kali Linux or 

Parrot OS. Therefore, the choice of Kali Linux, not only represents an actual attacker, allowing us to 

familiarize with his/her toolset, but also includes the required software, that will enable us to monitor 
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and interpret communication and data exchanged between our targets. 

 

Figure 12: Factory IO simulated scene 

The initial step was to pinpoint ourselves in the current subnet/network. Though, the simulation 

testbed is given, and we are aware of all the components the systems consist of, it is always considered 

best practice to have an overview of the current network we are working in. This assists us not only by 

providing us the required targets, but also by allowing us to carefully examine the whole network 

and/or subnet for potential “threats” – tools that would comprise our attacking position. In order to 

do so, we use the terminal console of Kali Linux and insert the command “ifconfig” that allows us to 

find the IP address and check the subnet mask. What we notice, is that the subnet mask is 

255.255.255.0, meaning that we are currently in a CLASS C network with CIDR /24 notation. This 

implies that in our network we could potentially have 254 assets, may that be computers, production 

machines, servers, etc.  

 

Figure 13: Nmap execution to find IP addresses 
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By having this initial valuable information, the next step includes the execution of Nmap, a tool that is 

used to discover hosts and services on a computer network by sending packets and analyzing the 

responses. As already mentioned, we are somehow familiar with the topology of the simulated 

network, so one might think that performing this step is not necessary. However, this is far from true, 

since the nmap allows us to specifically distinguish the production components interacting within the 

network and will be easier for us, posing as attackers, to monitor the data exchange between them. 

The command that will give in our terminal is: nmap 192.168.88.0/24. The reply will return with 4 IP 

addresses – all parts of our simulated environment. More specifically, we have the following results, 

as presented in Figure 13: 

Only with one command we were able to retrieve some basic information: in our network, there are 

currently 4 assets (SCADABR is not part of this simulation) and we need to understand which 

component is which.  

We already know by “ifconfig” that we previously executed that .207 is our own IP. From ports 53 

(dns), 80 (http) & (https), we can understand that the only device that requires dns is actually our 

pfSense router. As one may notice, by process of elimination, we are able to focus in the two machines-

of-interest. However, none of them seems to be a production device using Modbus protocol. By 

default, Nmap only scans the most popular ports of each protocol, so in the case of Modbus TCP, port 

502 TCP was only scanned after the correct configuration of the Nmap command, which is the 

following:  

$ sudo nmap -sT -sV -O -A -vv -p- [IP] 

The above command is executed for both IPs 192.168.88.100 & 192.168.88.201. The following figures 

(Figure 14 and Figure 15) illustrate the results:  

 

Figure 14: Nmap execution for 192.168.88.100 to find open ports 

 

Figure 15: Nmap execution for 192.168.88.201 to find open ports 

Now, the recognition is much easier allowing us to know in fact that Factory IO can be only deployed 

and executed in Windows environment, thus asset with IP 192.168.88.100 is the machine-of-interest. 

Indeed, we can see that apart from port 502 used in Modbus communication, a variety of Windows 

services leave no shadow of doubt. So, the asset with IP 192.168.88.201 could only be the OpenPLC 
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component. It is running on Linux OS using port 502, so now we can be sure about the identity of each 

machine. 

Once the IP addresses of each VM were identified and confirmed, since the followed approach is the 

white box, Wireshark was executed in order to capture some exchanged packets between the OpenPLC 

and the Factory IO.  

We execute Wireshark from our Kali Linux VM and we start capturing the traffic of interface eth0, 

which is in promiscuous mode and therefore able to monitor all network traffic. As we are only 

interested in Modbus communication packets, we use the filter “tcp.port==502”. This allows us to 

follow all data exchanged between those two components.  

The communication begins with the standard 3-way handshake, as all TCP connections require to do 

so. It is imperative to understand which machine initiates the communication, in order to be able to 

distinguish the Modbus server from the client. Since the one who has the production lines’ instructions 

and transmits them is usually the OpenPLC, we expect to see that it is the one sending the first SYN to 

FactoryIO. FactoryIO replies with the standard SYN/ACK and as the last part of the handshake requires, 

OpenPLC responds with an ACK and communication channel is ready for use. 

We can notice from the early beginning that there is a loop in the communication, which is described 

and well-documented in “Introduction to Modbus TCP/IP”. In our scenario, Modbus uses two standard 

Modbus functions: The Read Discrete Inputs and the Write Multiple Coils. Each of the above cycles 

consists of the query, the response and the ACK part. Having this information, will allow us to monitor 

the communication easier and more effective. 

For the purposes of this deliverable, we examine carefully a “Read Inputs” and a “Write Coils” request. 

We can easily identify from the Wireshark packet capturing the following information: 

1. Source and Destination Port. As already explained, since the OpenPLC initiates the 

communication, it uses a random port, while the FactoryIO who is listening, awaiting 

instructions uses port 502. 

2. Both for request and response the same Transaction ID is used. 

3. For the first time, we are obtaining the RTU’s ID number. In our simulation, the ID is 1, but in 

an actual production environment, that number may vary or even have multiple IDs of multiple 

RTUs. 

4. From both request and response, we can see that the function code is 000 0010, which equals 

to decimal “2”. This function code in Modbus actually means “Read Discrete Input”. 

5. Last, but not least, the request requires 16 bits (8 and 8 bits) starting at 0 (as a Reference 

number). In our environment, we configured OpenPLC and FactoryIO to use 2 production lines, 

each of 8 total inputs. So, the first number (query digits 1 & 2), refers to the inputs of the first 

production line, while the second one (query digits 3 & 4), refers to the inputs of the second 

production line. 

So, in this example, we see numbers 0016 4416 and we know that the first number refers to the 1st 

production line. As a first step, we convert the number to binary and 0016 <==> 000000002  

We know that the first bit starts at position 0 (reference number), so we have the following bits in the 

following positions: 

Position 0 1 2 3 4 5 6 7 
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Bits 0 0 0 0 0 0 0 0 

We apply the same technique for the second production line. First converting the 4416 to binary, gives 

us the following bits: 010001002 

Position 0 1 2 3 4 5 6 7 

Bits 0 1 0 0 0 1 0 0 

The response of the above is able to tell us what the status of each input is (1=on, 0=off), however we 

cannot retrieve the information of which input corresponds to which sensor. This is an issue that we 

will return to it after a while. 

At this point we need the assistance of OpenPLC. From the captured values and by using the registers, 

we can understand which sensor corresponds to each component in our production lines. For example, 

if we have a payload of 01110110010000002, we can map it as follows: 

Register %IX100.0 %IX100.1 %IX100.2 %IX100.3 %IX100.4 %IX100.5 %IX100.6 %QX100.7 %IX101.0 %QX101.1 

Bit 0 1 1 1 0 1 1 0 0 1 

Now, we can see the exact state of all our sensors. It is worth mentioning, that the last 6 bits are not 

used, since in our schema, both production lines use only 10 sensors. Yet, we still don’t know, which 

value corresponds to each component. We can use the assistance of OpenPLC, that reveals to us the 

mapping of the Registers with the Point Names: 

 

Figure 16: Mapping of the registers with the point names 

Now, the idea starts getting clearer. We are able to tell what the sensors are and in what production 
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line they belong. From the descriptive Point Names, we can always assume what are the performed 

actions. However, we need to understand which sensor belongs to each production line. In order to 

achieve this task, we need to correspond the point names with the actual components by using the 

FactoryIO and matching the values. By the end of this task, we will know with certainty how the sensors 

are correlated to the simulated environment. Following the next reconnaissance phase, we analyze 

the second request, namely the “WRITE COILS” function. 

By analyzing the Modbus packets correlated to the “WRITE COILS” function, the below information 

could be retrieved: 

1. Source and Destination Port. Same applies as in the previous example: the OpenPLC initiates 
the communication by using a random port and the FactoryIO, who is listening, awaits 
instructions in port 502. 

2. Both for request and response the same Transaction ID is used. 
3. In this field, we are expecting to see the RTU’s ID number, which is 1, but -as already 

mentioned- in an actual production environment, that number may vary or even have multiple 
IDs of multiple RTUs. 

4. From both the request and response, we can see that the function code is 000 1111, which 
equals to decimal “15”. This function code in Modbus actually means “Write Multiple Coils”. 

5. Last, but not least, the “WRITE COILS” function requires 14 bits (7 and 7 bits) starting at 0 (as 
a Reference number). We configured OpenPLC and FactoryIO in our environment to use two 
production lines, each of 7 total outputs. So, the first number refers to the outputs of the first 
production line, while the second one refers to the outputs of the second production line.  

In this case, we need to examine different frames of the captured packets in order to better understand 
the use of the actuators. This will allow us to see the changes as they occur and map them, in order to 
find out which actuator corresponds to which component in FactoryIO. So, in this example, let’s see 
the output for both production lines: 

Regis

ter 

%QX10

0.0 

%QX10

0.1 

%QX10

0.2 

%QX10

0.3 

%QX10

0.4 

%QX10

0.5 

%QX10

0.6 

%QX10

0.7 

%QX10

1.0 

%QX10

1.1 

%QX10

1.2 

%QX10

1.3 

%QX10

1.4 

%QX10

1.5 

%QX10

1.6 

Bit 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 

Now, we know the exact state of all our actuators. But we still do not know, which value corresponds 

to each component. We can use the assistance of OpenPLC, that will allow us to map the registers to 

the point names: 
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Figure 17: Mapping of the registers with the point names 

As in the previous step, we are now in position to distinguish the actuators and map them with the 

production line. From the descriptive point names, we can always assume which are the performed 

actions. However, we need to understand which actuator belongs to each production line. In order to 

perform this task, we need to correspond the point names with the actual components by using the 

FactoryIO and matching the values. 

At this point, it is worth mentioning that in all Modbus communications (TCP or RTU), there are no 

security mechanisms implemented by design, meaning that someone could have full access to 

information leading to reading and writing all data. Consequently, the packet sniffing with Wireshark 

revealed several information that could be used to compromise the Modbus TCP communication. 

Based on the information gathered using the Wireshark tool and taking advantage of the known 

information on the sensors and actuators in Factory IO, also including the mapping of the components 

used in the scene, we are able to recognize the packet sequences they receive. By listing the exact bits 

they receive, the researcher has the ability to intervene and execute a Man-in-The-Middle (MiTM) 

attack and inject different bits than those sent regularly. This action was conducted using the 

Metasploit framework of Kali. More specifically, it provides a Modbus tool that allows the user, first of 

all to read the registers and then perform the writing of a different byte. This leads to the malfunction 

of the production line, causing several damage and financial loss. Besides Metasploit, another Modbus 

penetration testing tool was examined, called Smod, but the attacks conducted through this tool did 

not affect the operations of the testbed at all. 

All in all, the above-mentioned work regarding the Modbus communication protocol was submitted as 

a research paper and was accepted after review for presentation at the IEEE Conference on Standards 

for Communications and Networking (CSCN 2023) with the title of the paper being “Securing Modbus 

TCP Communications in Ι4.0: A Penetration Testing Approach Using OpenPLC and Factory IO”. 

5.5 Zero-SWARM exploitation and vulnerability report 
Figure 18 illustrates the use of the opcua_server_config module, which is used to obtain security 

related information for OPC UA server instances, already being accessed. The module will report 

available endpoints, request information about other servers this server knows about and iterate all 

nodes looking for writable nodes. As depicted below, the steps to use the opcua_server_config module 
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include: 

1. Start msfconsole 

2. use auxiliary/scanner/opcua/opcua_server_config 

3. set rhosts <IP> 

4. set rport <port> 

5. run 

 

Figure 18: Metasploit OPC-UA scanning process in progress 

Figure 19 shows the available OPC-UA modules from the Metasploit platform that can be used to 

examine an OPC-UA communication.  

 

Figure 19: Available Metasploit OPC-UA related modules 

For the purpose of this simulation environment, the UaExpert, a fully featured OPC-UA client was set 

up and used. The basic framework of UaExpert includes general functionality like certificate handling, 

discovering UA Servers, connecting with UA Servers, browsing the information model, displaying 

attributes and references of particular UA Nodes. As depicted in Figure 19, the Project pane shows the 

connected UA Servers and the open document plugins. The Address Space pane shows the UA Servers 

information model. Depending on the Node selected in the Browser the Attribute and Reference 

Windows show the attribute of the selected Node and its references within the meshed network of 

the server’s address space. 
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Figure 20: Configuration and User Interface of the OPC-UA client 

6 Hypothesis testing plugin 

6.1 Methodology used for the hypothesis testing realization 
A brief presentation of the SigClust method with Soft Thresholds, as shown in [45] follows: Let 

X=[x_1,x_2,...,x_n], x∈R^d, be a dataset of n observations each containing the values d different KPIs. 

The method starts from the null hypothesis that the data of X come to form a single multivariate 

Gaussian distribution N(μ,Σ). A test level α, e.g., α=0.95 is pre-specified to finally test the Hypothesis. 

Let C_1 and C_2 be two disjoint sets resulting from the application of a clustering of the data points 

contained in X i.e., C_1∪C_2={1,2,...,n}. Then, an indicator of the strength of the clusters can be 

attained by the Cluster Index (CI), that is used as the test statistic of the method: 

𝐶𝐼 =
∑ ∑ |𝑖∈𝐶𝑘

2
𝑘=1 |𝑥𝑖 − 𝑥‾(𝑘)||2

∑ |𝑛
𝑖=1 |𝑥𝑖 − 𝑥‾(𝑘)||2

 

where 𝑥‾𝑘 is the mean of cluster 𝑘 ∈ [1,2] while 𝑥‾ is the overall mean. Estimate values (𝜆1̂, . . . , 𝜆𝑑̂) for 

the eigenvalues of 𝛴 must be computed. Let (𝜆1̃, . . . , 𝜆𝑑̃) be the eigenvalues of the sample covariance 
matrix. The covariance matrix 𝛴 can be written as 

𝛴 = 𝛴0 + 𝜎𝑁
2𝐼 

for a low-rank positive semi-definite matrix 𝛴0. Let 𝑊0 be a positive semi-definite matrix 𝑊0 with 
rank(𝛴0)=rank( 𝑊0 ). Then the precision matrix 𝐶 can be defined, where: 

𝐶 ≡ 𝛴−1 ≡ (𝛴0 + 𝜎𝑁
2𝐼)−1 =

1

𝜎𝑁
2 𝐼 − 𝑊0 (1) 

To estimate 𝛴, the negative log-likelihood is minimized to using 𝐶 and the sample covariance 

𝛴̃ =
(𝑋 − 𝑋‾)(𝑋 − 𝑋‾)𝑇

𝑛
, 

to yield 

𝑎𝑟𝑔𝑚𝑖𝑛𝑐[−𝑙𝑜𝑔|𝐶| + 𝑡𝑟𝑎𝑐𝑒(𝐶𝛴̃)], 
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subject to (1) and 𝐶, 𝑊0 ≽ 0.Let 𝑀 ≥ 0, be a tuning parameter. An additional constrained is set to 
control the signal versus the noise of the data: 

𝑡𝑟𝑎𝑐𝑒(𝑊0) ≤ 𝑀 

Finally, 

𝜆𝑗̂ = {
𝜆̃𝑘 − 𝜏,if 𝜆̃𝑘 > 𝜏 + 𝜎𝑁

2

𝜎𝑁
2 ,if 𝜆̃𝑘 ≤ 𝜏 + 𝜎𝑁

2
 

where 𝜏 is obtained by solving 

∑ (
1

𝜎𝑁
2 −

1

(𝜆̃𝑘 − 𝜏)+

)
+

𝑑

𝑘=1

 

Using the computed eigenvalues, the theoretic optimal CI value is obtained by 

𝑇𝐶𝐼 = 1 −
2

𝜋

𝑚𝑎𝑥((𝜆1̂, . . . , 𝜆𝑑̂))

∑ 𝜆𝑖
𝑑
𝑖=1

 

The rest of the process has four steps: 

1. Data from the null distribution is simulated: (𝑥1, . . . , 𝑥𝑑) are independent with 𝑥𝑗 ∼

𝑁(0, 𝑚𝑎𝑥(𝜆̂𝑗, 𝜎̂𝑁
2)). 

2. This data is clustered using the k-means algorithm with k = 2; the corresponding CI value is 
calculated. 

3. By repeating steps 1 and 2 a large number of times, an empirical distribution of the values of CI 
is obtained.Using the CI values obtained by the simulation, calculate a 𝑝 −value for the CI value 
of 𝑋. 

4. A conclusion can be derived based on test level 𝛼. 

By using the p-value from the final step the following hypothesis is answered: 
𝐻𝑜 The clusters come from the same distribution (𝑝 ≤ 0.05) or 
𝐻1 The clusters come from a different distribution (𝑝 ≥ 0.05). 

To apply this method to distinguish the difference between different mitigation action sets the 

following procedure followed: Let 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛], 𝑥 ∈ ℝ𝑑, be a data set of n historical 

observations each containing the values 𝑑 different KPIs with 𝑥𝑛 being the latest observation. Let 𝑥𝑛+1 

be the KPI values occurring from modifying 𝑥𝑛. Some clustering algorithm is applied to all data, 

resulting in a partition of clusters 𝐶 = {𝐶1, 𝐶2, . . . 𝐶𝑗}, 𝑗 ≤ 𝑛 for all data points. Let 𝐶𝐴,𝐶𝐵 be the clusters, 

the data-points 𝑥𝑛 and 𝑥𝑛+1 belong to. If 𝐶𝐴 = 𝐶𝐵 the case is trivial, and no testing is required since 

the points belong to the same cluster. Else, let 𝑥𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ⊂ 𝑋 be the subset of all points that belong 

either in 𝐶𝐴 or 𝐶𝐵. Then, the Statistical Significance of Clustering methodology described above is 

applied as described, answering the question: "Are 𝐶𝐴 or 𝐶𝐵 different in terms of their underlying 

distribution and is this difference statistically significant?". 

The figure below (Figure 21) illustrates the overview of the hypothesis testing module, which will be 

developed in the context of this task T5.4. The evaluation of the performance of this tool will be 

performed in the second phase of this task, taking advantage of the simulation platform developed 

and described in section 7. 
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Figure 21: High level overview of the Hypothesis testing module 

7 Simulation platform for evaluation 

In essence, the penetration test in question is a meticulously orchestrated evaluation of the inter-

device communication within the IEC 61499 environment, employing a carefully designed test 

application and SoftPLC emulations. By continuously monitoring KPIs and scrutinizing the behaviour of 

these critical devices, this test aims to provide invaluable insights into the reliability and security of 

industrial automation systems, ultimately contributing to enhanced system resilience and 

cybersecurity. 

7.1 Test application design with IEC61499 cross communication over UDP 
In the context of the penetration test conducted in T5.4, a specialized test application is meticulously 

crafted within an IEC 61499 environment. This test application is ingeniously designed and consists of 

two crucial Function Blocks, which are classified as CATs (Composite Automation Types). Within the 

test environment, these CATs are distinctly labelled as PLC1 and PLC2. The fundamental function of 

this test application is to evaluate and scrutinize the inter-device communication between two IEC 

61499 devices, a task of paramount importance in the realm of industrial automation and control 

systems. The objective is to ensure the robustness and security of data exchange between these critical 

components. 

As illustrated in the Figure 22 provided, PLC1 takes on the role of the initiator in this orchestrated 

interaction. At precise one-second intervals, PLC1 diligently transmits a signal, encapsulating critical 

data, to its counterpart, PLC2. The ingenuity of this setup lies in PLC2's responsive behaviour. It 

promptly reciprocates by reflecting the received signal back to PLC1. This bi-directional communication 

is pivotal in assessing not only the reliability but also the integrity of the data exchange process. 
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Figure 22: Test application in IEC61499 Environment - UDP cross communication 

To facilitate this distributed communication of an IEC61499 platform and emulate real-world 

scenarios, the test harness leverages a IEC61499 UDP (User Datagram Protocol) communication node. 

Within this context, the SoftPLC, an emulation of a real-world Programmable Logic Controller (PLC) 

operating within the IEC 61499 environment, takes centre stage. This software-based PLC replica 

serves as the backbone of the testing infrastructure, enabling the seamless exchange of data between 

the two CATs (PLC1 and PLC2). These two SoftPLCs, acting as master and slave devices, engage in 

synchronized communication over the UDP protocol.  

As the test application is prepared for deployment, it is meticulously mapped to two instances of the 

SoftPLC. This pairing simulates the actual deployment of PLCs in an industrial setting, allowing for a 

comprehensive evaluation of their performance and security in a controlled environment.  At the heart 

of this assessment lies the monitoring and measurement of Key Performance Indicators (KPIs). These 

metrics are diligently tracked throughout the testing process to assess and quantify the behaviour of 

the PLCs under scrutiny. The KPIs encompass various aspects of the communication process, including 

latency, throughput, CPU and memory consumption and error rates, shown in Figure 23: 

 

Figure 23: Test results for KPI measurement on the IEC61499 environment 

Enriching analytical capabilities, the test application provides an intuitive Human-Machine Interface 

(HMI) that acts as the window into the inner workings of the IEC61499 automation platform and 

communication system. This real-time HMI visualization empowers engineers, and operators to gain 

immediate access to KPIs and test results. It is a tool of utmost significance in our pursuit of 



 

Project funded by Horizon Europe, Grant Agreement #101057083 54 

understanding, optimizing, and safeguarding the performance and security of industrial automation 

systems. 

7.2 Test application with MQTT communication between two IEC61499 
platforms 

This test application part within the MQTT communication node is an intricate dance of data 

orchestrated through the MQTT protocol. It not only showcases the elegance of MQTT's 

publish/subscribe methodology but also underscores our commitment to creating efficient and 

dependable communication systems for industrial automation and beyond. 

Within the MQTT communication node, our test application operates seamlessly within the MQTT 

protocol framework. MQTT, known for its lightweight and efficient messaging paradigm, employs a 

publish/subscribe method to facilitate communication between two MQTT clients. Each of these 

clients boasts the capability to publish data under a designated Topic onto an MQTT broker and, 

conversely, subscribe to data under specific Topics through the same MQTT broker. It's a versatile 

system that offers flexibility in routing and managing data flows. 

The MQTT broker, a pivotal component in this communication architecture, can be deployed either 

within the confines of the IEC 61499 environment or externally, depending on the specific testing 

requirements and architectural considerations. This flexibility ensures that our testing environment 

aligns precisely with the real-world scenarios our application is designed to address. 

In the IEC 61499 engineering environment, we've ingeniously integrated Service Interface Function 

Blocks (SFBs) to streamline the process of creating applications that facilitate communication between 

two MQTT clients. This sophisticated orchestration enables a seamless flow of data between these 

clients. 

Now, let's delve into the roles played by our CATs within this MQTT communication ecosystem. In the 

master-PLC, we've incorporated a Signal Sender Function Block (FB) equipped with MQTT client 

capabilities. This FB serves as the initiator, responsible for transmitting a signal at precise one-second 

intervals. This signal is encapsulated within the MQTT_PUBLISH SFB and is delivered to the MQTT 

broker under a distinct Topic name. On the flip side, our slave-PLC houses a Signal Receiver Function 

Block (FB) also equipped with MQTT client functionality. This FB assumes the role of the receiver within 

this dynamic communication dance. It subscribes to data using the very same Topic name used for 

publication via the MQTT_SUBSCRIBE SFB. Once the data is received from the MQTT broker, it is 

dutifully relayed back to the master-PLC CAT, completing the bi-directional data exchange. 

 
Figure 24: Test application in IEC 61499 Environment - MQTT communication 
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This synchronized communication dance, occurring at the cadence of one signal per second, provides 

us with a unique opportunity to meticulously observe and evaluate the performance and efficiency of 

our MQTT-based communication system. We will closely monitor the same metrics, as mentioned 

above, to ensure that the test application operates robustly and reliably. 

7.3 Test application with OPC-UA communication between two IEC61499 
platforms 

Within the context of Zero-SWARM, we're harnessing the power of OPC-UA as our interface of choice 

for the integration of and communication with IT software modules. This versatile protocol plays a 

pivotal role in facilitating communication in two crucial directions within our industrial ecosystem. 

Firstly, OPC-UA serves as the linchpin between the Production line and the IEC61499 control 

application. In this capacity, it enables seamless and robust communication, primarily for monitoring 

purposes. The Production line communicates with the Edge Gateway through OPC-UA, providing real-

time insights into the operational status and performance metrics of the production processes. This 

flow of information is essential for monitoring and optimizing the efficiency and productivity of the 

production line. 

Secondly, OPC-UA comes into play once again, this time serving as the communication conduit 

between the Edge Gateway nodes and an AI software node. This interaction is central to the 

integration of AI and automation, where data from the industrial processes is shared with AI algorithms 

for advanced analysis and decision-making. The bidirectional flow of data between the IEC61499 node, 

powered by the IEC61499 automation platform, and the AI software node ensures that intelligent 

insights are gained and acted upon in real-time. 

Now, let's zoom in on the specific test application scenario you've described. Here, the master PLC is 

the focal point, equipped with an OPC-UA client. It assumes the role of the data initiator, sending 

values at precise one-second intervals. These values encapsulate critical data related to the production 

processes, which are essential for monitoring and decision-making, shown in Figure 25 

 
Figure 25: Test application in IEC 61499 Environment – OPC-UA communication 

On the other side of the equation, the slave PLC plays the role of the OPC-UA server. It receives the 

incoming signals from the master PLC and mirrors them back to their source—the master PLC. This bi-

directional communication loop is instrumental in not only evaluating the efficiency and reliability of 

the OPC-UA communication but also in assessing the responsiveness and robustness of the overall 

system. 
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Just as with other communication methods in our testing suite, we meticulously measure the same set 

of KPIs. These KPIs include parameters such as responsiveness of the OPC-UA communication. By 

scrutinizing these metrics, we gain invaluable insights into the performance of the OPC-UA-based 

communication system, which is central to the smooth operation of Zero-SWARM. 

In summary, our utilization of OPC-UA as a communication interface in Zero-SWARM underscores its 

versatility and reliability in connecting production lines, Edge Gateway nodes, IEC61499 automation 

platforms, and AI software nodes. This orchestrated symphony of data exchange ensures that 

industrial processes run smoothly, are closely monitored, and can benefit from intelligent insights and 

decision-making capabilities. 

7.4 Test application with Modbus TCP (Master/Slave) communication 
between two IEC61499 platforms 

Our aim is to introduce Modbus as an additional load into our existing test application, effectively 

simulating a fieldbus connection. This strategic addition enables us to probe the system further, 

scrutinizing potential side effects while meticulously measuring the Key Performance Indicators (KPIs) 

of the IEC61499 automation platform. 

Modbus, a versatile application layer messaging protocol, assumes a pivotal role in this endeavour. It 

facilitates client and server communications between devices, seamlessly bridging the gap on different 

types of buses or networks. Modbus's robust architecture offers a plethora of services, each elegantly 

specified by function codes, making it an ideal candidate for our communication needs. 

In our sophisticated EcoStruxure Automation Expert environment, the configuration of Modbus is 

orchestrated with precision through a hierarchical structure consisting of three interconnected layers. 

Each layer, bound by a parent-child relationship, plays a distinctive role in ensuring seamless 

communication and parameterization: 

Bus Layer: At the foundational level, the Bus layer defines the communication type between the client 

and server and outlines the blueprint for how communication will be orchestrated. It sets the stage for 

a well-coordinated dance of data exchange. Within EcoStruxure Automation Expert, we deploy both 

master and slave configurations for our test application. Here, one entity serves as an external 

simulator, intrinsically penetrating the system with predefined values. This dynamic interplay is central 

to our assessment of system behaviour under load. 

Modbus Device Layer: Building upon the Bus layer, the Modbus Device layer takes centre stage by 

defining the specific communication settings between itself and the counterpart Bus (e.g., IP address, 

station ID, etc.). It acts as the bridge between the Bus and the actual data exchange. In our EcoStruxure 

Automation Expert setup, various types of Modbus devices are at our disposal, and for our test 

application, TCP is leveraged, ensuring robust and reliable communication. 

Modbus Registers Layer: At the topmost layer of this hierarchy, the Modbus Registers layer comes into 

play. It meticulously defines all variables that are to be communicated, specifying where and how they 

are transmitted and clarifying their data types. This layer essentially encapsulates the core of the data 

exchange process. In EcoStruxure Automation Expert, we are presented with a range of Modbus 

register types, each with its own unique characteristics. Synchronizing the compatibility of the 

Modbus-simulator used within the system is of paramount importance at this layer to ensure seamless 

communication. 
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As we embark on this journey of integrating Modbus into our test application, we are not only adding 

an additional layer of complexity but also a wealth of opportunities for evaluating system performance 

and robustness. By meticulously measuring KPIs and probing for side effects, we are poised to gain 

valuable insights into the behaviour of the IEC61499 automation platform under various 

communication scenarios, bolstering its reliability and resilience in industrial automation settings. 

7.5 Combined load with external clients interacting with the IEC61499 
platform 

Expanding our scope of penetration testing within the realm of the IEC61499 automation platform, we 

are poised to embark on another scenario of critical assessment. In this scenario, we introduce external 

MQTT and OPC-UA clients into the equation, further intensifying the testing environment. This 

strategic move aims to scrutinize and evaluate the behaviour of the IEC61499 platform under the 

simultaneous influence of multiple loads, including the existing cross-application load and the Modbus 

simulation load. 

This multifaceted test scenario is designed to assess the IEC61499 platform's resilience, performance, 

and security when subjected to a comprehensive array of loads, both internal and external. The 

integration of MQTT and OPC-UA clients into the testing environment brings a new layer of complexity, 

mirroring real-world scenarios where diverse communication protocols and sources converge within 

an industrial setting. 

To execute this scenario effectively, we rely on the capabilities of our penetration testing tools, as 

illustrated in Figure 27. 

These tools are instrumental in simulating the behaviour of external MQTT and OPC-UA clients, 

thereby generating additional load on the IEC61499 platform. The external load is meticulously 

controlled and manipulated to emulate various communication patterns, message volumes, and 

frequencies, akin to what might be encountered in a production environment. 

The orchestration of this comprehensive test scenario demands a fine balance between all the loads 

involved. 

 

Figure 26: Test application in IEC 61499 Environment – combined load 
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7.6 Cybersecure and non-cybersecure use-cases in the IEC61499 automation 
platform 

The schematic diagram in Figure 27 below provides a visual representation of the security measures 

implemented within our system. It uses color-coded lines to convey the status of security for various 

connections, offering a quick and intuitive overview of our security infrastructure. 

Green Line Connections: These connections are depicted in green, signifying that all components 

linked by these lines benefit from robust TLS (Transport Layer Security) encryption. TLS is a well-

established cryptographic protocol that ensures secure and private communication between devices. 

The presence of green lines assures us that data flowing through these pathways is protected from 

unauthorized access and tampering. 

Red Line Connections: Conversely, the red lines indicate connections between devices that are not yet 

secured. This serves as a visual cue to draw attention to potential vulnerabilities in these 

communication channels. It is a reminder that further security measures may be needed to safeguard 

these connections adequately. 

 

 

Figure 27: Cybersecure and non-cybersecure use-cases in the IEC61499 automation platform 

Additionally, to bolster our security posture during penetration tests, we address specific scenarios 

beyond the core IEC61499 cross-communication and external client communication discussed in 

previous sections. These scenarios include: 

Engineering Workstation Security: 

Certificate Management: Our engineering workstation is fortified with robust certificate management 

capabilities. This ensures that digital certificates, a fundamental component of secure communication, 

are handled effectively. Certificates play a pivotal role in verifying the authenticity of devices and users, 

enhancing the overall security of our solution. 

Password Requirement: A stringent password requirement is in place to secure access to the 
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engineering workstation. When creating a solution within the IEC61499 environment, users are 

mandated to establish an account with a unique USER ID and password. This initial authentication step 

is a crucial layer of defense against unauthorized access. 

Deployment Security: During the deployment of our IEC61499 test application onto IEC61499 devices, 

a robust access permission mechanism is enforced. Devices are explicitly asked for access permission 

before the deployment process can proceed. Furthermore, the communication during deployment is 

encrypted, ensuring that the application reaches its destination securely and without interference. 

HMI Authentication and Security: 

Credential-Based Authentication: Our Human-Machine Interface (HMI) incorporates a robust 

authentication mechanism. When the HMI is initiated, it prompts users to enter the credentials 

established at the outset of the solution creation process. Without successful authentication, access 

to the HMI is denied. This stringent authentication layer ensures that only authorized personnel can 

interact with the HMI, enhancing the security of our system. 

Encrypted Visualization: Within the HMI, the values and data changes of our test application are 

meticulously visualized. Importantly, this communication is encrypted, ensuring that data remains 

confidential and protected from eavesdropping or tampering. 

Archiving Security: 

Secure Data Archiving: When archiving values into a historical database, robust encryption measures 

are employed. This means that the data inputs and outputs of the function blocks within our test 

application can be configured for secure archiving. This ensures that historical data remains 

confidential and tamper-proof, safeguarding the integrity of our records. 

Incorporating these security measures across various aspects of the IEC61499 system architecture 

underscores our commitment to protecting data, ensuring authorized access, and maintaining the 

confidentiality and integrity of our industrial automation solution. These security enhancements, 

alongside our rigorous penetration testing efforts, are pivotal in fortifying our system against potential 

vulnerabilities and threats. 

8 Conclusion 

In the scope of D5.4, an initial approach was examined in the domain of penetration testing, trying to 

identify potential threats in two industrial communication protocols, namely OPC-UA and Modbus TCP. 

Two separate simulation testbeds were deployed in order to validate the proposed approaches. 

Significant findings came up, revealing the need of adopting cybersecurity mechanisms inside 

industrial environments. The Modbus communication results were also submitted to an IEEE 

conference [51] and accepted for presentation, proving in this stage of the project that the 

cybersecurity activities in the scope of this task are novel. The intention of this task is to also try to 

automate penetration testing, in order to make some processes more straightforward with the 

adoption of AI algorithms. Furthermore, the development of an IEC61499 simulation platform will 

allow partners to further research on the security of industrial communication protocols, such as 

Modbus, OPC-UA, MQTT and IEC61499 communications in an environment, closer to a real industrial 

production line. Finally, with regards to the hypothesis testing module, some initial architectural 

designs have been defined, allowing the development of the module. All findings will be reported 
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thoroughly in the next version of this deliverable, D5.9, the successor of D5.4. On the other hand, we 

are in contact with Node leaders and Trial leaders in order to assess the possibility of working closely 

with the project trials and have the ability to validate our modules in the trials as well, in the context 

of WP6.  
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