

Project funded by Horizon Europe, Grant Agreement #101057083

D5.4 - Penetration and hypothesis testing
diagnostic plugins

ZERO-enabling Smart networked control framework for Agile cyber physical production systems of

systems

Project funded by Horizon Europe, Grant Agreement #101057083 2

Author List

Topic HORIZON-CL4-2021-TWIN-TRANSITION-01-08

Project Title ZERO-enabling Smart networked control framework for Agile

cyber physical production systems of systems

Project Number 101057083

Project Acronym Zero-SWARM

Contractual Delivery Date M16

Actual Delivery Date M17

Contributing WP WP5

Project Start Date 01/06/2022

Project Duration 30 Months

Dissemination Level Public

Editor CERTH

Contributors NX-SE, S21Sec

Leading Author (Editor)

Surname Initials Beneficiary Name Contact email

Lazaridis GL CERTH glazaridis@iti.gr

Co-authors (in alphabetic order)

Surname Initials Beneficiary Name Contact email

Hatzidiamantis NH CERTH hatzidiamantis@iti.gr

Mpatziakas AM CERTH ampatziakas@iti.gr

Contributors (in alphabetic order)

Surname Initials Beneficiary Name Contact email

Deshmukh SF NE-SE shreya.deshmukh@se.com

Borne RB S21Sec rborne@s21sec.com

Egaña JE S21Sec Jegana@s21sec.com

Fritz AF NX-SE artur.fritz@se.com

López OL S21Sec olopez@s21sec.com

mailto:glazaridis@iti.gr
mailto:hatzidiamantis@iti.gr
mailto:ampatziakas@iti.gr
mailto:shreya.deshmukh@se.com
mailto:rborne@s21sec.com
mailto:Jegana@s21sec.com
mailto:artur.fritz@se.com
mailto:olopez@s21sec.com

Project funded by Horizon Europe, Grant Agreement #101057083 3

Reviewers List

Document History

List of reviewers (in alphabetic order)

Surname Initials Beneficiary Name Contact email

Castellvi SC IDSA Silvia.Castellvi@internationaldataspace

s.org

Drosou AD CERTH drosou@iti.gr

Khodashenas PK HWE pouria.khodashenas@huawei.com

Parker SP ACC stephen.parker@accelleran.com

Document History

Version Date Author Remarks

0.1 17/01/2023 CERΤΗ Table of Content

0.2 21/02/2023 All Updates and assignment of work

0.3 10/04/2023 All Section 3

0.4 26/06/2023 CERTH and S21Sec Section 5

0.5 21/08/2023 CERTH Section 6

0.6 25/09/2023 All Sections 1, 2, 4, 7, 8

0.7 11/10/2023 CERΤΗ Sent for internal review

0.8 17/10/2023 All Addressing the review comments

1.0 18/10/2023 CERTH Final submission

mailto:Silvia.Castellvi@internationaldataspaces.org
mailto:Silvia.Castellvi@internationaldataspaces.org
mailto:drosou@iti.gr
mailto:pouria.khodashenas@huawei.com
mailto:stephen.parker@accelleran.com

Project funded by Horizon Europe, Grant Agreement #101057083 4

DISCLAIMER OF WARRANTIES
This document has been prepared by Zero-SWARM project partners as an account of work carried out

within the framework of the contract no 101057083.

Neither the Project Coordinator, nor any signatory party of the Zero-SWARM Project Consortium

Agreement, nor any person acting on behalf of any of them:

 makes any warranty or representation whatsoever, express or implied,

o concerning the use of any information, apparatus, method, process, or similar item

disclosed in this document, including merchantability and fitness for a particular

purpose or

o that such use does not infringe on or interfere with privately owned rights, including

any party's intellectual property

 that this document is suitable to any particular user's circumstance; or

 assumes responsibility for any damages or other liability whatsoever (including any

consequential damages, even if the Project Coordinator or any representative of a signatory

party of the Zero-SWARM Project Consortium Agreement, has been advised of the possibility

of such damages) resulting from your selection or use of this document or any information,

apparatus, method, process, or similar item disclosed in this document.

Zero-SWARM has received funding from the European Union’s Horizon Europe research and

innovation programme under grant agreement No 101057083. The content of this deliverable does

not reflect the official opinion of the European Union. Responsibility for the information and views

expressed in the deliverable lies entirely with the author(s).

Project funded by Horizon Europe, Grant Agreement #101057083 5

Table of Contents

Table of Contents .. 5

List of Figures ... 7

List of Tables .. 7

List of Acronyms .. 8

Executive Summary ... 10

1 Introduction ... 11

1.1 Purpose of the document .. 11

1.2 Structure of the document .. 12

1.3 Deliverable plan along the Zero-SWARM project and objectives ... 12

2 Connection with the relative tasks and deliverables ... 13

2.1 Connection to Zero-SWARM architecture, T5.1 and use-cases .. 13

2.2 Connection to anomaly detection and countermeasure selection modules 14

3 Introduction to penetration and hypothesis testing ... 15

3.1 Penetration testing .. 15

3.1.1 Penetration testing background .. 15

3.1.2 Penetration Testing Approaches ... 20

3.1.3 Penetration Testing frameworks and methodologies ... 21

3.1.4 Overview of CPSoS penetration testing .. 23

3.1.5 State-of-the-art for automated Penetration Testing .. 25

3.2 Hypothesis testing ... 27

4 CPSoS security analysis .. 28

4.1 Application of standardized methodologies ... 28

4.2 Security by design (OPC-UA, MQTT).. 30

4.2.1 Mapping IEC 62443 – OPC-UA PART 2 SECURITY .. 30

4.2.2 OPC 11030 UA Modelling Best Practices ... 30

4.2.3 Modern Protocol: OPC-UA vs MQTT ... 31

5 Penetration testing modules.. 32

5.1 Zero-SWARM penetration testing methodology .. 32

5.1.1 OPC-UA .. 32

5.1.2 Modbus TCP/IP communication protocol ... 33

5.2 Vulnerability analysis of CPS .. 34

5.2.1 OPC-UA communication protocol ... 34

5.2.2 Modbus TCP communication protocol .. 35

5.3 OPC-UA Penetration testing toolset .. 37

5.3.1 Fuzzer .. 37

5.4 Initial validation tests for the penetration test modules .. 38

Project funded by Horizon Europe, Grant Agreement #101057083 6

5.4.1 OPC-UA simulation testbed ... 38

5.4.2 Modbus TCP simulation testbed ... 39

5.5 Zero-SWARM exploitation and vulnerability report ... 48

6 Hypothesis testing plugin ... 50

6.1 Methodology used for the hypothesis testing realization .. 50

7 Simulation platform for evaluation .. 52

7.1 Test application design with IEC61499 cross communication over UDP 52

7.2 Test application with MQTT communication between two IEC61499 platforms 54

7.3 Test application with OPC-UA communication between two IEC61499 platforms 55

7.4 Test application with Modbus TCP (Master/Slave) communication between two IEC61499
platforms.. 56

7.5 Combined load with external clients interacting with the IEC61499 platform 57

7.6 Cybersecure and non-cybersecure use-cases in the IEC61499 automation platform 58

8 Conclusion .. 59

References ... 61

Project funded by Horizon Europe, Grant Agreement #101057083 7

List of Figures

Figure 1: Zero-SWARM zoomed in CPS structure and connection to T5.4 14

Figure 2: Unified high-level T5.4 - T5.5 interconnections 15

Figure 3: Penetration testing process phases 15

Figure 4: Differences between the three PT approaches 21

Figure 5: Example of the scope of the IEC 62443 standard documents 29

Figure 6: Metasploit and Fuzzing modules architecture 37

Figure 7: Phases of the fuzzing process 38

Figure 8: Preliminary penetration testing module validation environment 39

Figure 9: Physical architectural diagram of simulated environment 40

Figure 10: Simulated industrial environment showcasing the interconnections of all tools 42

Figure 11: Factory IO simulated scene 43

Figure 12: Nmap execution to find IP addresses 43

Figure 13: Nmap execution for 192.168.88.100 to find open ports 44

Figure 14: Nmap execution for 192.168.88.201 to find open ports 44

Figure 15: Mapping of the registers with the point names 46

Figure 16: Mapping of the registers with the point names 48

Figure 17: Metasploit OPC-UA scanning process in progress 49

Figure 18: Available Metasploit OPC-UA related modules 49

Figure 19: Configuration and User Interface of the OPC-UA client 50

Figure 20: High level overview of the Hypothesis testing module 52

Figure 21: Test application in IEC61499 Environment - UDP cross communication 53

Figure 22: Test results for KPI measurement on the IEC61499 environment 53

Figure 23: test application in IEC 61499 Environment - MQTT communication 54

Figure 24: test Application in IEC 61499 Environment – OPC-UA communication 55

Figure 25: test Application in IEC 61499 Environment – combined load 57

Figure 26: Cybersecure and non-cybersecure use-cases in the IEC61499 automation platform 58

List of Tables

Table 1: Analysis of the characteristics of the fuzzers 27

Project funded by Horizon Europe, Grant Agreement #101057083 8

List of Acronyms

Abbreviation Definition

AAS Asset Administration Shell

AI Artificial Intelligence

BSIMM Building Security In Maturity Model

CAT Composite Automation Type

CPS Cyber Physical System

CPSoS Cyber Physical System of Systems

CPU Central Processing Unit

CVSS Common Vulnerability Scoring System

D Deliverable

DoS Denial of Service

FB Function Block

GA Grant Agreement

GA Genetic Algorithm

HMI Human Machine Interface

IDE Integrated Development Environment

IDS Intrusion Detection System

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IIoT Industrial Internet of Things

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention System

ISECOM Institute for Security and Open Methodologies

ISSAF Information System Security Assessment Framework

IT Information Technology

KPI Key Performance Indicator

LFA Link Flooding Attack

M Month

ML Machine Learning

MQTT Message Queuing Telemetry Transport

NAT Network Address Translation

OISSG Open Information Systems Security Group

Project funded by Horizon Europe, Grant Agreement #101057083 9

OPC-UA Open Platform Communications United Architecture

OS Operating System

OSSTMM Open-Source Security Testing Methodology Manual

OT Operational Technology

OWASP Open Web Application Security Project

PLC Programmable Logic Controller

PT Penetration Testing

PTES Penetration Testing Execution Standard

QoS Quality of Service

RTU Remote Terminal Unit

SA Static Analysis

SCADA Supervisory Control And Data Acquisition

SFB Service Interface Function Block

SUT System Under Test

T Task

TLS Transport Layer Security

TCP Transmission Control Protocol

UDP User Datagram Protocol

VM Virtual Machine

VPN Virtual Private Network

WP Work Package

Project funded by Horizon Europe, Grant Agreement #101057083 10

Executive Summary

In the context of Zero-SWARM, deliverable D5.4 - Penetration and hypothesis testing diagnostic

plugins v1, is the first technical cybersecurity document of a series of four deliverables. This deliverable

focuses on the cybersecurity aspects of Cyber Physical Systems (CPS), introducing penetration testing

as a means of securing such industrial systems. We first try to connect these cybersecurity activities

with the general architectural overview of Zero-SWARM (D2.2), focusing only on the automation

architecture presented in D5.1 and extending it to showcase clearly the contribution of this task T5.4.

Besides the aforementioned connections to these deliverables, there is also a connection to D2.3,

where the cybersecurity activities of penetration testing and hypothesis testing should follow specific

guidelines. Nevertheless, it is worth mentioning that D5.4 is also correlated to D5.5 regarding the

anomaly detection and countermeasure selection modules and how all these cybersecurity modules

exchange information between them.

The main activities of penetration testing include the examination of communication protocols, such

as OPC-UA, MQTT and Modbus and the development of a module capable of testing these protocols.

Moreover, research has been conducted in order to try to automate the penetration testing processes

and make them more user-friendly, allowing any IT personnel to conduct such tests. To validate the

developed penetration testing module, two initial stage simulation testbeds were deployed, one

regarding the OPC-UA communications while the other was using the Modbus TCP communication

protocol to exchange data. Several tests were performed and the results together with the deployment

are reported in this deliverable. Besides these two testbeds, an IEC61499 simulation testbed was also

developed, giving the opportunity to researchers to assess the industrial communication protocols and

processes in a more realistic way.

On the other hand, this task also includes the development and validation activities of the hypothesis

testing module. In the context of D5.4 some initial work has been conducted and the development of

this module has advanced and has been reported in this document. The final development and

validation of this module, in the context of T5.4, will be reported in the next version of this deliverable,

namely D5.9.

Project funded by Horizon Europe, Grant Agreement #101057083 11

1 Introduction

Within the domain of Cyber Physical Systems of Systems (CPSoS), the relentless pursuit of robust

cybersecurity is elevated as a paramount and overarching objective. This first version of D5.4 serves as

a comprehensive blueprint, outlining the multifaceted purpose and strategic roadmap envisioned to

bolster cybersecurity within the CPSoS ecosystem. At its core, this attempt is driven by the imperative

to enhance cybersecurity awareness and decision-making capabilities. The primary mission at hand is

the implementation of diagnostic plugins, namely the penetration testing and the hypothesis testing

modules, which will function as the linchpin in achieving these goals. These modules are not only

poised to become integral components of the ambitious Zero-SWARM project. Still, they are also set

to play an important role in executing meticulous security risk assessments and advanced threat

modelling for the entire deployed CPSoS infrastructure. As a cornerstone of this initiative, adherence

to the globally recognized IEC-62443 security standard, specifically tailored to industrial automation

and control systems, underscores the commitment to ensuring the highest levels of security, including

elements like confidentiality.

1.1 Purpose of the document
The purpose of this deliverable is to outline the comprehensive objectives and strategies aimed at

enhancing cybersecurity within the context of the CPSoS. The primary goal of this endeavour is the

development and integration of diagnostic plugins that will significantly augment cybersecurity

awareness and decision-making processes within the CPSoS framework. These diagnostic plugins will

play a crucial role in the realization of the Zero-SWARM initiative, focusing on conducting thorough

security risk assessments and robust threat modelling for the deployed CPSoS. One fundamental

aspect of this document is the commitment to adhere to the IEC-62443 security standard, a recognized

benchmark for security risk assessment within industrial automation and control systems. Under Task

T5.4, the project will prioritize specific security properties, such as confidentiality, to ensure that the

CPSoS remains resilient against potential threats and vulnerabilities.

Moreover, a critical component of this task will involve the development of a conformance testing

tool. This tool is designed to rigorously validate the stability and communication aspects of a secure

CPSoS architecture from a design perspective. Furthermore, the project will employ penetration

testing techniques to assess and verify the security configuration of the CPSoS, aiming to identify any

potential vulnerabilities that could pose a risk to its integrity, confidentiality, and availability. These

penetration tests will go beyond existing third-party frameworks, extending their capabilities to

include network discovery and vulnerability exploitation functionalities tailored to the unique

characteristics of industrial systems, such as OPC-UA and Modbus for communication protocols, MQTT

for data gathering and cloud services.

The outcomes of these penetration tests will serve as a basis for the determination of appropriate

mitigation actions. These actions will be carefully crafted to ensure that they do not compromise the

integrity, confidentiality, or availability of the critical industrial processes underpinning the CPSoS.

Furthermore, this document underscores the importance of a proactive approach in addressing

security threats and risks faced by the CPSoS. It highlights the significance of utilizing data obtained

through OPC-UA and Asset Administration Shell (AAS) to implement a Hypothesis Testing tool. This

tool will empower system operators to assess how the application of various countermeasures can

impact the overall security and functionality of the CPSoS.

In essence, this document encapsulates the overarching objectives of this project, which are geared

Project funded by Horizon Europe, Grant Agreement #101057083 12

towards fortifying the cybersecurity posture of the CPSoS, safeguarding its critical components and

enabling resilient decision-making processes in the face of evolving security threats and challenges.

1.2 Structure of the document
The document is structured as follows:

 Chapter 1 is an introduction to the whole document, describing its scope and purpose, its

structure, and the delivery plan during the project’s lifetime, as well as outlining the task’s

objectives;

 Chapter 2 provides the connection of deliverable D5.4 to other deliverables of the project;

 Chapter 3 gives some introductory information regarding the two modules that this task

should deliver, namely the penetration testing and the hypothesis testing modules;

 Chapter 4 presents a security analysis of the Cyber Physical System of Systems (CPSoS);

 Chapter 5 outlines the penetration testing modules focusing on two different protocols (OPC-

UA, Modbus) and presenting the early-stage simulation testbeds, with the help of which the

penetration testing modules will be validated;

 Chapter 6 presents the initial idea and methodology for the development of the hypothesis

testing module;

 Chapter 7 introduces the IEC61499 simulation platform that will be used in the second stage

of the task to validate the modules in a more realistic environment, closer to an industrial

production line;

 Chapter 8 will conclude the work of this deliverable, provide some insight regarding the next

steps of this task and will comment on the task’s activities.

1.3 Deliverable plan along the Zero-SWARM project and objectives
Based on the project’s Gantt chart, task T5.4 activities started on M07 of the project. The first

deliverable of this task D5.4 - Penetration and hypothesis testing diagnostic plugins v1 was planned to

be delivered on M16. Due to the interconnection of this cybersecurity related document to

deliverables D2.2 and D2.3, whose revisions will be submitted on M17, a delay of about fifteen days

was requested in order to synchronize the conducted work. Moreover, even though it will be

mentioned in section 5, part of the work related to penetration testing was submitted and accepted

for presentation at the IEEE Conference on Standards for Communications and Networking after a

review process. Due to all the above-mentioned reasons and without derailing any other activities, this

deliverable, D5.4 will be officially submitted with a small delay.

In this first phase of task T5.4, partners were able to develop two early-stage simulation testbeds, one

simulating industrial OPC-UA communications and the other simulating Modbus TCP communications,

which will be described in this document. Based on these testbeds, we were able to conduct our initial

penetration tests in order to explore and get to know these protocols better. To this end, the

penetration testing methodology for industrial scenarios proved to be different from the classic

methodology someone could use for performing penetration testing towards a web server. Moreover,

in the same context, an IEC61499 simulation platform was developed, which will allow us to explore in

a more realistic way and close to a real-life industrial production line, our penetration testing modules.

All tests related to this simulation platform will be reported in the next version of D5.4, namely D5.9,

Project funded by Horizon Europe, Grant Agreement #101057083 13

along with any activities carried out in the second phase of T5.4, towards M24.

On the other hand, some initial work and development on the hypothesis testing module has already

been carried out and will be reported in section 6. In the second phase of T5.4 and in the context of

the deliverable D5.9, all advancements and tests related to hypothesis testing will also be reported.

All in all, based on the Grant Agreement (GA) [37], task T5.4 aims to fulfill the following objectives:

 To implement diagnostic plugins that will provide cybersecurity awareness and decision

making in CPSoS

 To perform security risk assessment & threat modelling of the deployed CPSoS

 To validate the stability and communication of a secure CPSoS architecture from a design

perspective

 To identify possible vulnerabilities of the main technologies & devices deployed in Zero-

SWARM and trials

 To implement pen tests for verification of the secure configuration of the deployed CPSoS

 To allow the system operator to examine the effect of applying different countermeasures for

the CPSoS vulnerabilities identified

To a certain point, the above-mentioned objectives are in the process of being validated in this first

phase of the project, as described in this document, but will be totally fulfilled by the end of this task.

As someone can understand from the objectives, the majority of the work has been concentrated on

the penetration testing activities, but, of course, the hypothesis testing activities have not been

underestimated.

2 Connection with the relative tasks and deliverables

Deliverable D5.4 - Penetration and hypothesis testing diagnostic plugins is the first technical

cybersecurity document of a series of four deliverables, in the scope of tasks T5.4 and T5.5. Due to the

nature of this task, the cybersecurity activities are horizontally placed within the project, covering the

cybersecurity aspects of nearly the whole project. For this reason, D5.4 is directly connected with a

series of other deliverables of the project. More specifically, there is a connection among D5.4 and

D2.2, D2.3, D5.1 and D5.5. The following sections present briefly the interconnection between these

deliverables.

2.1 Connection to Zero-SWARM architecture, T5.1 and use-cases
The figure below illustrates a zoomed in architecture of the overall CPS structure, following the three-

layer architecture as presented in the official Zero-SWARM deployment view architecture in D2.2 - Eco

designed architecture, specifications & benchmarking [39]. The architecture presented in this section

was thoroughly analyzed in D5.1 - Distributed automation and information management [41],

showcasing all three layers but also extending the architecture in order to represent the IEC 61499

automation platform (simulation platform), which will be a starting point for the evaluation of the tools

developed in the context of task T5.4. More specifically, the architecture depicts the different

communication protocols that will be used for data exchange across the three layers, namely MQTT,

OPC-UA, Modbus and IEC61499. These protocols will be examined from a cybersecurity perspective to

understand if they have any vulnerabilities that could jeopardize an industrial production line, if

compromised. Furthermore, besides any network vulnerabilities, the simulation platform will be

assessed regarding its applications, its physical security, human factors, etc., as described in section

Project funded by Horizon Europe, Grant Agreement #101057083 14

3.1.4. In the scope of WP6, the penetration testing and hypothesis testing modules are planned to be

validated in the Node scenarios, taking advantage of the already gained knowledge over the testing of

the modules with the IEC61499 simulation platform.

Figure 1: Zero-SWARM zoomed in CPS structure and connection to T5.4

2.2 Connection to anomaly detection and countermeasure selection modules
This section describes the interconnection between the two cybersecurity tasks of the Zero-SWARM

project, namely T5.4 – Ad-Hoc penetration and hypothesis testing plugins and T5.5 - Anomaly

detection and countermeasure selection modules. The following figure depicts a unified high-level

workflow, showcasing how all four modules of these cybersecurity tasks (T5.4 – T5.5) interact with

each other. More specifically, the penetration testing modules (1), having detected vulnerabilities and

determined the attack surface of a specific CPS, will inform the anomaly detection module (2) about

possible attack types and vulnerabilities. The next step, the anomaly detection module, is responsible

for detecting known attacks or anomalous traffic. This information will be fed in the countermeasure

selection module (3), informing it about ongoing attacks and anomalies. Then, the countermeasure

selection module will decide the best strategy to handle attacks and anomalies, based on a predefined

list of actions, regarding the software or hardware components attacked. The last step includes the

update of the hypothesis testing module (4), with the output of the countermeasure selection module.

In other words, the aforementioned module will inform the hypothesis testing module about the

decided strategy and the predefined list of actions based on the component attacked. Last but not

least, the hypothesis testing module will compare different mitigation strategies based on static KPIs

and statistical difference, allowing the system operator to examine how the application of different

countermeasures will affect the CPSoS. More information on the anomaly detection and

countermeasure selection modules will be presented thoroughly in D5.5 - Anomaly detection and

countermeasure selection tools.

Project funded by Horizon Europe, Grant Agreement #101057083 15

Figure 2: Unified high-level T5.4 - T5.5 interconnections

3 Introduction to penetration and hypothesis testing

3.1 Penetration testing
3.1.1 Penetration testing background

Penetration Testing (PT) has emerged as a fundamental practice within the realm of cybersecurity over

the past decade. It entails the deliberate and controlled execution of an authentic attack on a digital

asset, which may encompass computer systems, industrial systems, Internet of Things (IoT) devices,

software applications or networks, with the primary objective of scrutinizing their security posture.

The process of PT is meticulously structured into a series of sequential tasks, enabling a systematic and

comprehensive evaluation of the target system's security. This often includes the proactive

identification of vulnerabilities and the execution of a predetermined set of actions to assess the

potential for compromise by employing exploits against these identified vulnerabilities. In practice, PT

generally includes six process phases, which are depicted in Figure 3, but they can also vary from case

to case. The pre-engagement interactions phase sets the foundation for a successful penetration test

by ensuring that both the client and the testing team have a clear understanding of the scope,

objectives, and rules governing the engagement. It helps establish trust and transparency between all

parties involved, which is essential for a smooth and effective penetration testing process [27][28][29].

Figure 3: Penetration testing process phases

3.1.1.1 Step 1: Pre-Engagement Interaction

This first pre-phase called pre-engagement interactions in penetration testing is a crucial initial stage

in the overall penetration testing process. It involves a series of activities and communications

between the penetration testing team and the client or organization that has requested the

Project funded by Horizon Europe, Grant Agreement #101057083 16

penetration tests. Below, some key aspects and considerations can be found, related to this pre-phase:

 Client engagement: The process typically begins with the client or organization expressing

their intent to conduct a penetration test. This could be driven by regulatory requirements,

security concerns or a proactive effort to assess and improve their security posture.

 Scope definition: The penetration testing team works closely with the client to define the

scope of the engagement. This involves identifying the specific systems, networks,

applications, or assets that will be tested. It is crucial to establish clear boundaries to avoid

unintended consequences or disruptions during the testing.

 Rules of engagement: During this phase, the rules of engagement are established. These rules

outline what is allowed and what is not allowed during the penetration test. For instance, the

team may agree on whether they can attempt to exploit vulnerabilities, use social engineering

techniques, or simulate insider threats.

 Legal and Compliance Considerations: Ensuring that the penetration test complies with all

relevant laws and regulations is essential. Pre-Engagement Interactions may involve legal

reviews and documentation to protect both the client and the testing team from legal

repercussions.

 Communication protocols: Establishing clear lines of communication is vital. The client and

the testing team need to agree on how and when they will exchange information, updates,

and findings throughout the engagement.

 Scheduling and timing: The timing of the penetration test is determined during this phase. It

is essential to coordinate the testing schedule with the client to minimize disruptions to their

operations.

 Resource and personnel allocation: Identifying the resources and personnel needed for the

engagement is part of pre-engagement planning. This includes specifying who from the client's

side will be involved, as well as assembling the penetration testing team with the required

skills and expertise.

 Documentation: Detailed documentation is essential. This includes creating a formal

penetration testing agreement or contract that outlines all the terms and conditions, as well

as objectives and expectations for the engagement.

 Preparation: Before the actual testing begins, both the client and the testing team need to

ensure that all necessary preparations are in place. This may involve setting up test

environments, acquiring any required tools or resources, and conducting any training or

briefings for the personnel involved.

3.1.1.2 Step 2: Reconnaissance

The reconnaissance phase is one of the critical stages in the process of penetration testing. It involves

gathering information about the target system, network or organization to comprehensively

understand the environment before initiating any active attacks. This phase is often considered the

first step in the penetration testing process and is primarily focused on passive information gathering.

This step 2 phase provides penetration testers with a solid foundation of knowledge about the target

environment, which they can use to plan and execute subsequent phases of testing. By identifying

potential vulnerabilities and weaknesses early in the process, penetration testers can help

organizations strengthen their security defenses and mitigate potential risks. Certain key aspects of

the reconnaissance phase are listed below:

Project funded by Horizon Europe, Grant Agreement #101057083 17

 Passive information gathering: Reconnaissance is primarily a passive phase, meaning that the

penetration testing team collects information without directly interacting with the target

system. This helps maintain stealth and avoid triggering alarms or security measures.

 Objectives: The primary objectives of the reconnaissance phase include identifying potential

targets, understanding the target's infrastructure, discovering vulnerabilities, and gathering

intelligence about the target organization's security posture.

 Information sources: Information is collected from various sources, including public records,

online databases, social media, domain registration records, search engines, and public

websites. The goal is to find publicly available information that could be useful for identifying

potential weaknesses.

 Types of reconnaissance:

o Passive reconnaissance: This involves collecting information that is publicly available

or can be obtained without directly interacting with the target. This might include

identifying IP addresses, domain names, email addresses, and employee names.

o Active reconnaissance: While not as discreet as passive reconnaissance, active

reconnaissance involves scanning and probing the target's network to discover open

ports, services, and potentially vulnerable systems. It is a more intrusive phase and

can sometimes be detected by network security tools.

 Tools and techniques: Penetration testers often use a variety of tools and techniques for

reconnaissance, such as network scanning tools (e.g., Nmap), domain name lookup tools (e.g.,

WHOIS), search engines, social engineering tactics (e.g., phishing for information), and online

forums or communities where information about the target organization may be discussed.

 Information collected: During reconnaissance, testers aim to gather information about the

target's IP addresses, network architecture, domain names, subdomains, email addresses,

employee names and roles, software and hardware used, and potentially any known

vulnerabilities associated with the identified systems.

 Documentation: Thorough documentation of all collected information is crucial. This

documentation will serve as the foundation for subsequent phases of penetration testing,

helping testers make informed decisions about attack vectors and potential vulnerabilities.

 Ethical considerations: Reconnaissance activities must always be conducted ethically and

within the bounds of any legal agreements or permissions obtained from the client. Engaging

in unauthorized or malicious information gathering is not only unethical but also illegal.

3.1.1.3 Step 3: Threat Modelling & Vulnerability Identification

The threat modelling and vulnerability identification phase is a significant step in the overall process,

as well. It involves systematic analysis and assessment of the target system, network or application to

identify potential threats, vulnerabilities and weaknesses. This phase is essential for understanding the

security landscape of the target and determining where attacks might be most effective. These are the

main characteristics associated with this step:

 Objective: The primary objective of the Threat Modeling & Vulnerability Identification phase

is to identify and document potential vulnerabilities and threats that attackers could exploit.

This includes both known vulnerabilities and those that may not have been previously

recognized.

 Methodical approach: Penetration testers use a systematic and structured approach to assess

the target. This often involves reviewing architecture diagrams, network configurations,

Project funded by Horizon Europe, Grant Agreement #101057083 18

application source code (if available), and other relevant documentation to understand how

the target is designed and how it functions.

 Threat modeling: Threat modelling is a technique used to identify potential threats and attack

vectors. It involves thinking like an attacker and considering various ways in which the target

could be compromised. Threat modeling helps testers prioritize their efforts by focusing on

the most critical assets and potential threats.

 Asset identification: In this phase, penetration testers identify and classify the assets within

the target environment. Assets can include data, systems, applications, hardware, and any

other components that are essential to the organization.

 Vulnerability assessment: Testers actively search for vulnerabilities within the target. This may

involve scanning for open ports, services, and known vulnerabilities using tools like

vulnerability scanners or manual testing techniques. Vulnerability assessment may also include

code review for software applications.

 Risk assessment: Once vulnerabilities are identified, testers assess their potential impact and

likelihood of exploitation. This helps prioritize which vulnerabilities should be addressed first,

considering the potential consequences of a successful attack. Common scales used for risk

assessment include CVSS (Common Vulnerability Scoring System) or similar frameworks.

 Documentation: Comprehensive documentation is an essential part of this phase. Testers

create a detailed list of identified vulnerabilities, their descriptions, their locations and the

potential risks associated with each asset. This documentation serves as a basis for the

subsequent exploitation and post-exploitation phases.

 Reporting: After identifying and assessing vulnerabilities, penetration testers typically create

a formal report for the client. This report includes a summary of findings, detailed descriptions

of vulnerabilities, their potential impact on the organization, and recommendations for

mitigation.

3.1.1.4 Step 4: Exploitation

The exploitation phase of penetration testing represents an important step within the assessment

process. This phase is characterized by active attempts made by the penetration tester to exploit

identified vulnerabilities within the target system, network or application to be checked. The primary

objective of this step is to validate the existence and potential impact of the vulnerabilities identified

in the previous step, simulating real-world attacks to determine whether a malicious user could

successfully compromise the target. The most important characteristics of this step of penetration

testing are listed below:

 Systematic approach: Penetration testers follow a methodical and well-planned approach

during exploitation. They carefully strategize and execute attacks while adhering to predefined

rules of engagement and the scope outlined with the client.

 Active engagement: Unlike the preceding reconnaissance and vulnerability identification

phases, the Exploitation phase involves active engagement with the target. Testers actively

seek out weaknesses and security flaws and attempt to leverage them to gain unauthorized

access or control.

 Tools and techniques: A variety of tools, scripts, and techniques are employed by penetration

testers during exploitation. These tools are often selected based on the specific vulnerabilities

and attack vectors identified earlier in the assessment process.

Project funded by Horizon Europe, Grant Agreement #101057083 19

 Privilege escalation: Initial exploitation efforts may grant testers limited access to the target.

During this phase, they may employ privilege escalation techniques to gain higher levels of

control over the system, increasing the potential impact of their actions.

 Documentation: Detailed documentation is an integral part of the exploitation phase. Testers

meticulously record every step of the attack process, including the tools used, commands

executed and outcomes achieved. This documentation serves as critical evidence and supports

comprehensive reporting to the client.

 Client communication: Effective communication with the client may continue during this

phase to provide progress updates and seek guidance in case of unexpected challenges.

Maintaining transparency fosters trust between the testing team and the client.

3.1.1.5 Step 5: Post-Exploitation, Risk Analysis & Recommendations

The post-exploitation, risk analysis and recommendations stage of the penetration testing process

follows the exploitation phase. It involves the systematic analysis of the impact of successful

exploitation, assessment of risks and the formulation of actionable recommendations to improve

security. The following listed items depict the key aspects of this stage:

 Post-exploitation activities: After successfully exploiting vulnerabilities in the target system,

the penetration tester may engage in post-exploitation activities. These can include

maintaining control over compromised systems, escalating privileges, exfiltrating sensitive

data, or exploring the network further. Post-exploitation activities help simulate how an

attacker might continue to exploit a compromised system.

 Risk analysis: Once post-exploitation activities are completed, the penetration tester conducts

a thorough risk analysis. This analysis evaluates the potential consequences of the successful

exploitation, considering factors such as data exposure, system compromise, business

disruption, and regulatory compliance violations. The goal is to understand the true impact of

the vulnerabilities and the potential risks to the organization.

 Recommendations: Based on the findings from the risk analysis, the penetration tester

formulates a set of actionable recommendations. These recommendations are designed to

help the client mitigate the identified vulnerabilities, improve security controls, and enhance

the overall security posture. Recommendations may include software patching,

reconfiguration of security settings, strengthening access controls, or employee training.

 Prioritization: Recommendations are typically prioritized based on the severity of the

vulnerabilities and the potential impact on the organization. High-risk vulnerabilities that could

lead to severe consequences are often addressed first. This prioritization allows the client to

allocate resources efficiently to mitigate the most critical issues.

 Documentation: Detailed documentation of post-exploitation activities, risk analysis and

recommendations, is crucial. The penetration tester provides a comprehensive report that

includes a summary of findings, descriptions of vulnerabilities, their potential impact, and the

recommended

 Mitigation plan: Following the consultation, the client develops a mitigation plan based on the

recommendations provided by the penetration tester. This plan outlines the specific steps and

timelines for addressing the identified vulnerabilities and improving security controls.

 Reassessment: In some cases, the client may request a follow-up penetration test to verify

that the recommended security improvements have been effectively implemented and the

vulnerabilities have been remediated.

Project funded by Horizon Europe, Grant Agreement #101057083 20

3.1.1.6 Step 6: Reporting

The reporting stage is the final step of penetration testing, where the results and findings of the

assessment are documented and communicated to the relevant stakeholders. This step is essential for

ensuring that vulnerabilities and security weaknesses are properly addressed and that the organization

can improve its security posture. Some of the main elements of the reporting phase in the context of

penetration testing are listed below:

 Report compilation: Penetration testers compile all the data, evidence, and findings collected

during the testing phase into a comprehensive report. This report typically includes detailed

information about the vulnerabilities discovered, their severity, and how they can be

exploited.

 Executive Summary: An executive summary is often included at the beginning of the report. It

provides a high-level overview of the penetration test's objectives, methodology, key findings

and recommendations. This section is designed for non-technical stakeholders, such as

executives and managers.

 Technical details: The main body of the report contains detailed technical information about

each vulnerability or security issue identified. This includes the affected systems, potential

impact, and a step-by-step explanation of how the penetration tester was able to exploit the

vulnerability.

 Recommendations: Penetration testers provide actionable recommendations for mitigating

the identified vulnerabilities and improving security. These recommendations are often

prioritized based on risk and potential impact to help organizations address the most critical

issues first.

 Remediation guidance: In addition to recommendations, penetration testers may offer advice

on how to remediate the vulnerabilities. This guidance may include technical steps, best

practices, or suggested configurations to improve security.

 Evidence & documentation: The report should include evidence to support the findings, such

as screenshots, logs and any other relevant documentation. This helps ensure the credibility

of the report and provides a clear record of the vulnerabilities.

 Reporting format: The format of the report may vary depending on the organization's

preferences and requirements. It can be presented in a written document, a presentation, or

a combination of both. Some organizations also request an oral presentation of the findings.

 Delivery & discussion: The penetration testing team typically delivers the report to the client

or relevant stakeholders. It's important to schedule a discussion or debriefing session to ensure

that all findings and recommendations are well understood and can be acted upon effectively.

 Follow-up: After the report is delivered, the organization should follow up on the

recommendations and begin the process of remediating the identified vulnerabilities. This may

involve further testing to validate that the fixes were effective.

3.1.2 Penetration Testing Approaches

This section gives a high-level overview of the three penetration testing approaches, as depicted in the

figure below, which are used to analyze and attack potential assets. This categorization tends to be

theoretical considering that the actual circumstances are quite different and may demand a

combination of the approaches listed below (Figure 4), depending on the complexity of the situation

and the client's requirements. Furthermore, the type and scope of testing tend to be established and

accepted before the launch of any test and could be revised or extended throughout the Zero-SWARM

Project funded by Horizon Europe, Grant Agreement #101057083 21

project's lifetime.

Figure 4: Differences between the three PT approaches

3.1.2.1 Black-box approach

Black box penetration testing is a cybersecurity testing approach where the penetration tester has no

prior knowledge about the target system or network being assessed. This method simulates the

perspective of an external attacker who has no insider information about the organization's

infrastructure.

3.1.2.2 White-box approach

White-box penetration testing, also known as clear box testing or transparent box testing, is a

cybersecurity assessment approach where the tester has full knowledge of the target system or

network being evaluated. In contrast to black box testing, where the tester has no prior information,

white box testing provides the tester with complete access to system documentation, source code,

network diagrams and other relevant details. This approach is mostly used by developers who are

responsible of assessing a system at the time it is being developed in order to provide a secure-by-

design asset. The white-box approach is the most advanced among the three approaches stated in this

section, namely the black-box, white-box and grey-box approaches.

3.1.2.3 Grey-box approach

The grey box penetration testing approach falls between black box and white box testing in terms of

information disclosure. In grey box testing, the penetration tester has some limited knowledge about

the target system or network, but not as much as in white box testing. This approach is designed to

simulate the perspective of a semi-informed attacker who may have partial insider information.

3.1.3 Penetration Testing frameworks and methodologies

Penetration testing frameworks and methodologies offer a structured framework for the preparation,

execution and documentation of cybersecurity vulnerability assessments. These resources encompass

a range of activities aimed at establishing robust security methodologies. Below are some well-known

penetration testing frameworks and standards, based on literature [52]:

 Open Worldwide Application Security Project (OWASP)

 Information System Security Assessment Framework (ISSAF)

 Open-Source Security Testing Methodology Manual (OSSTMM)

 Building Security In Maturity Model (BSIMM)

 Penetration Testing Execution Standard (PTES)

 Metasploit

Project funded by Horizon Europe, Grant Agreement #101057083 22

3.1.3.1 OWASP

The Open Web Application Security Project, commonly known as OWASP, is a globally recognized non-

profit organization dedicated to improving the security of web applications and software. Founded in

2001, OWASP has become a leading authority in the field of application security, offering a wealth of

resources, best practices, and tools to assist organizations in identifying and mitigating security

vulnerabilities in their web applications. Its primary mission is to make web applications and software

more secure by raising awareness about security risks and providing guidance on best practices. The

organization operates under the principles of openness, community collaboration and vendor

neutrality. Moreover, OWASP's contributions have had a significant impact on the field of

cybersecurity. Its resources and guidelines are widely used by organizations to secure their web

applications and its annual OWASP Top Ten list serves as a reference for identifying and addressing the

most critical security risks. Concluding, OWASP continues to empower organizations and individuals to

build and maintain secure web applications in an ever-evolving threat landscape [30][31].

3.1.3.2 ISSAF

The Information System Security Assessment Framework (ISSAF) is a concise and thoroughly evaluated

penetration testing guide, supported by the Open Information Systems Security Group (OISSG). Even

though this methodology is not updated anymore, it is used, nowadays, for its comprehensive nature.

More specifically, it separates information system security assessments into categories and specifies

particular requirements for evaluating and validating each of these categories. The main objective is

to deliver useful information into evaluations of security, which correspond to real-world events. ISSAF

is a core tool for satisfying an organization's security evaluation requirements and may additionally be

utilized as a reference for handling a variety of other information security concerns.

3.1.3.3 OSSTMM

OSSTMM stands for Open-Source Security Testing Methodology Manual. It is a peer-reviewed

methodology for security testing, maintained by the Institute for Security and Open Methodologies

(ISECOM). The OSSTMM is a comprehensive methodology that covers all aspects of security testing,

from planning and scoping to reporting and remediation. It is divided into five channels, as listed

below:

 Physical security: This channel covers the physical security of an organization, such as its

buildings, perimeter, and assets.

 Wireless communications: This channel covers the security of wireless networks, such as Wi-

Fi and Bluetooth.

 Telecommunications: This channel covers the security of telecommunications systems, such

as phone networks and data networks.

 Data networks: This channel covers the security of data networks, such as LANs and WANs.

 Human factors: This channel covers the security of human factors, such as social engineering

and phishing.

3.1.3.4 BSIMM

BSIMM stands for Building Security In Maturity Model and is a data-driven model that provides a

baseline of observed activities for software security initiatives. The BSIMM is based on a survey of over

200 organizations and identifies 12 practices that are common to successful software security

initiatives. The BSIMM can be used by organizations to assess their current software security posture

and to identify areas for improvement. It can also be used to benchmark an organization's software

security program against other organizations. These practices are organized into four domains:

Project funded by Horizon Europe, Grant Agreement #101057083 23

 Governance: Practices that help organize, manage, and measure a software security initiative.

 Intelligence: Practices that help organizations gather and analyze security intelligence.

 Secure Software Development Lifecycle (SSDL) touchpoints: Practices that are implemented

at different stages of the SDLC to improve security.

 Deployment: Practices that are implemented to secure software after it is deployed.

3.1.3.5 PTES

A group of information security specialists from many different industries developed and continue to

update the Penetration Testing Execution Standard, also known simply as PTES. PTES defines a

minimum standard for a penetration test, spanning from the initial client-tester negotiation to the

contents of the report. PTES aims to raise the threshold for penetration testing quality by offering

exceptional levels of guidance. Organizations have a better understanding of the services they are

paying for because of to the standardization of penetration testing guidelines, which also provides

penetration testers with precise instructions concerning what they are supposed to do during a

penetration test.

3.1.3.6 Metasploit

Metasploit is a penetration testing framework designed to help security professionals find and exploit

vulnerabilities in computer systems, networks and IoT devices. It is a powerful tool that can be used to

simulate real-world attacks, helping organizations to identify and mitigate security risks. The

Metasploit framework is modular, meaning that it is made up of a collection of individual tools that

can be combined to create custom attacks. This makes it a very flexible tool that can be used to test a

wide range of vulnerabilities. In 2003, Metasploit was officially launched as an open-source project but

was acquired in 2009 by Rapid7, a company that is now responsible for its development and support.

It is regularly updated with new modules and features, ensuring that it remains up-to-date with the

latest security threats.

3.1.4 Overview of CPSoS penetration testing

Cyber-Physical Systems of Systems (CPSoS) represent complex interconnected systems that combine

cyber elements (software, networks, data) with physical components (sensors, actuators, hardware).

Ensuring the security of CPSoS is critical due to their real-world impact on industries like industrial

automation, transportation and critical infrastructure. Penetration testing for CPSoS requires

specialized approaches to address the unique challenges they pose. As a proposed overview of

different penetration testing approaches for CPSoS based on [7][8][9][11] different phases of testing

can be considered.

 Network Penetration Testing:

o Focuses on the communication networks within the CPSoS

o Identifies vulnerabilities in network protocols, routers, switches, firewalls, and other

network components

o Tests for unauthorized access, data leakage, and potential network-level attacks

 Embedded System Penetration Testing:

o Targets the physical devices and components embedded in CPSoS

o Aims to identify vulnerabilities in firmware, hardware, and communication interfaces

of sensors, actuators, and controllers

o Evaluates potential risks from compromised embedded systems

 Application Penetration Testing:

o Concentrates on the software applications running in the CPSoS

Project funded by Horizon Europe, Grant Agreement #101057083 24

o Identifies vulnerabilities in web and mobile applications, including authentication

flaws, input validation issues, and insecure APIs

o Assesses the potential impact of application-level attacks on the CPSoS

 Fuzzing Testing:

o Utilizes automated input generation to identify vulnerabilities in software components

of the CPSoS.

o Sends malformed or unexpected inputs to applications and systems to trigger crashes,

errors, or unexpected behaviours.

o Helps uncover memory-related vulnerabilities, input validation issues, and potential

points of compromise [35].

 Physical Security Penetration Testing:

o Assesses the physical aspects of the CPSoS, including access controls, surveillance

systems, and physical barriers

o Tests the effectiveness of physical security measures in preventing unauthorized

access to critical components

 Supply Chain Penetration Testing:

o Evaluates the security of third-party components and software integrated into the

CPSoS

o Aims to identify vulnerabilities and potential backdoors introduced through the supply

chain

 Human Factors Testing:

o Assesses the impact of human interactions on CPSoS security

o Evaluates the effectiveness of security training, social engineering risks, and insider

threats within the CPSoS environment

 Resilience Testing:

o Focuses on the CPSoS ability to recover from cyberattacks

o Tests how well the system can continue operating despite ongoing attacks or

disruptions

 SCADA System Penetration Testing:

o Specific to CPSoS used in industrial control systems (SCADA systems)

o Assesses the security of industrial automation and control components, including

PLCs, HMIs, and communication protocols

 IoT (Internet of Things) Security Testing:

o Concentrates on IoT devices integrated into the CPSoS

o Identifies vulnerabilities in IoT hardware, firmware, and communication protocols that

might impact the CPSoS

 OPC-UA Penetration Testing:

o Focuses on the security of OPC-UA communication protocols and implementations

o Identifies vulnerabilities in OPC-UA servers and clients, ensuring secure data exchange

and preventing unauthorized access

Each of these approaches plays a vital role in ensuring the security and resilience of Cyber-Physical

Systems of Systems (CPSoS). The inclusion of fuzzing testing helps to address potential vulnerabilities

in software components by simulating real-world attacks with unexpected inputs.

Project funded by Horizon Europe, Grant Agreement #101057083 25

3.1.5 State-of-the-art for automated Penetration Testing

During the last decade, cyber-security firms and security systems developers have been heavily

focusing on producing automated [38] and semi-automated PT frameworks and systems aiming to

facilitate the work of network penetration testers and make the assessment of network security more

accessible to non-experts. Multiple systems are available for public use varying from free and open

source to more costly products. Popular products used in PT communities include Core- Impact,

Nexpose, Nessus, Qualys, Tenable, Immunity Canvas and Metasploit. The main contribution offered by

these systems compared with the traditional security and vulnerabilities scanners such as Nessus, is

their functionalities (planning, scanning, and exploiting) along with simplicity and flexibility of use

(automation of certain tasks, visualization, reporting). Yet, the offered automation (mainly related to

the planning phase of the practice) remains limited to the planning of the practice, the organization of

the tasks and the optimization/visualization and the automated reporting (phase 4). Nevertheless, the

heart of the PT practice was often neglected or poorly exploited. In fact, determining the exploitable

vulnerabilities and launching the relevant exploits, digging inside, and pivoting to create a new vector

of attack is undoubtedly the most challenging part. The difficulty itself lies on the current PT systems

which have radically changed and evolved and have become more complex, covering new attack

vectors and shipping increasing numbers of exploits and information gathering modules. Thus, the

problem of efficiency has emerged and controlling alike framework successfully along with maintaining

efficiency, is indeed the most important challenge.

3.1.5.1 Fuzzing State of the Art

Fuzzing is an automatic testing technique consisting of generating various inputs to break the system.

To do this, the system's output (System Under Test (SUT)) is monitored to detect any behaviour

different from the usual one. This technique is very popular for finding 0 days since it detects errors

never detected before without influencing the system or knowing its operation in depth [1].

The fuzzing inputs are specially designed to trigger unexpected behaviours in the SUT and allow the

finding of errors such as bad memory violations, assertion violations, incorrect handling of nulls, locks,

infinite loops, undefined behaviours or incorrect management of other resources. Compared to other

vulnerability hunting strategies, such as code inspection or reverse engineering, fuzzing has the

advantage that it can be done on a large scale and unattended since the fuzzing process is often

automated. Today, there are a large number of fuzzers, and each of them has its characteristics.

Therefore, there are different methods to classify fuzzers [10].

Type

Depending on the information that the fuzzer needs, it can be classified into the following three

approaches, as already described in section 3.1.2:

 Black box fuzzer (B): The first fuzzers were of this type and did not need to know the system's

internals or the source code. Although these fuzzers initially worked completely randomly,

today, they use techniques such as grammar to generate new entries. In this type of fuzzers,

it is difficult to determine the code coverage achieved.

 White box fuzzier (W): In this case, the fuzzier needs to access the source code or binary and

know the internal operation; they can also use techniques such as instrumentation that involve

making changes. Therefore, before running these fuzzers, it is necessary to perform a system

Project funded by Horizon Europe, Grant Agreement #101057083 26

scan to detect their characteristics. Guided coverage and dynamic symbolic analysis are

commonly used in these fuzzers.

 Gray box fuzzer (G): These fuzzers need certain information to work correctly. Usually, this

information is used to carry out the instrumentation. Nowadays, it is the most used technique

since without having exhaustive information about the system that is being tested, it obtains

better results [2].

Figure 5: Example of the scope of the IEC 62443 standard documents

Generation of inputs

Fuzzers can also be classified depending on how they generate new inputs into two categories:

 Mutational (M): fuzzers are of this type when they generate new entries starting from those

previously generated and performing different operations on them. This technique works very

well when the inputs are complex, but they need to receive feedback from the system to work

correctly.

 Generational (G): To generate the new entries, the SUT specifications are based, so it is

necessary to know the syntax of the entries and the protocol used. It cannot be used with SUTs

that are not precisely known but generate more accurate inputs than mutational ones.

Intelligence

Another way of classifying the fuzzers could be by taking into account whether the output of the

system is fed back to generate the new inputs or not:

 Smart (S): These are the fuzzers that adapt the generation of inputs to the system's output;

that is, they use the feedback technique to generate the new inputs.

 Dumb (D): These fuzzers do not use system output information; they execute faster than the

Smart type but tend to be less effective in finding vulnerabilities.

Fuzzing technique

Fuzzers today use various techniques to improve the search for vulnerabilities by making

improvements in different phases of fuzzing. Some of the most used techniques are Random Mutation

Project funded by Horizon Europe, Grant Agreement #101057083 27

(MA), Grammar (GR), Dynamic Symbolic Execution (DS), Dynamic Spot Analysis (DM), Guided Coverage

(CG), and Programming Algorithms (AP), static analysis (SA), Genetic Algorithms (GA) and Machine

Learning (ML).

Target

Another characteristic to take into account when selecting a fuzzer is knowing the type of SUT it

accepts as files (F), libraries (L), protocols (P), firmware (FW) and applications (A).

Table 1: Analysis of the characteristics of the fuzzers

Fuzzer Characteristics

Type Generation Intelligence Technique Target

AFL G M S CG/GA F/A

AFLfast G M S CG/AP F

AFLgo G M S CG/AP F

Boofuzz
(SGPFuzzer: A
State-Driven Smart
Graybox Protocol
Fuzzer for Network
Protocol
Implementations,
2020)

B G S

CG P

Frankestein G M S MA/CG F

Honggfuzz G M S CG F

IoTfuzzer B M S DS FW

Learn&Fuzz G G S ML F

Libfuzzer G M S CG L

Peach B M/G S MA/GR F/P

Smartfuzz W M S DS/CG A

After analyzing the state of the art of fuzzing and the need to test Open 62541, the fuzzer that best fits

the requirements is Boofuzz. Boofuzz is a Python-based fuzzer that can be downloaded from GitHub

[6]. This fuzzer allows testing different protocols, which can be adapted to different scenarios.

3.2 Hypothesis testing
In the realm of statistics, hypothesis testing involves the utilization of a data sample to assess the

credibility of a hypothesis related to the distribution of that particular sample. In the domain of IoT, a

variety of algorithms rooted in hypothesis testing have found effective application in addressing

domain-specific challenges.

Searching literature databases reveals the work performed in this specific area of research. More

specifically, these techniques have been extensively employed, notably in the domain of attack

detection. Authors in [42] employ a hypothesis testing algorithm to identify a Link Flooding Attack (LFA)

within an IoT Network, whereas authors in [43] leverage from the hypothesis testing algorithm to

enhance a distributed attack detection system. Besides of these aforementioned research papers,

there are numerous other applications of Hypothesis testing-based algorithms. For instance, they were

employed to conduct polling for the values of multiple Key Performance Indicators (KPIs) in a fog-based

IoT sensor network [44], to streamline protocols for authenticating IoT devices [45], and to ensure the

privacy of Smart Energy Meters [46]. Furthermore, decentralized methods have been proposed to

optimize energy consumption in IoT sensors [47], safeguarding privacy [48], and maintaining

robustness in scenarios involving noise and small-scale data sets [49].

As far as we know, no other hypothesis-based application in the existing literature assesses various

Project funded by Horizon Europe, Grant Agreement #101057083 28

mitigation strategies within an industrial environment. To this end, section 6 will introduce an

innovative approach to differentiate between distinct sets of mitigation measures. This method

empowers the system operator to make adjustments to an existing set of mitigation actions and

observe the resultant effects on the system. To elaborate, Key Performance Indicator (KPI) values

generated from various mitigation sets are subjected to clustering via a machine learning algorithm.

Subsequently, the divergence between these clusters is assessed utilizing a p-value, determined

through a Monte Carlo-based technique known as Statistical Significance of Clustering (SigClust),

employing Soft Thresholds [50].

4 CPSoS security analysis

To analyse and perform a cybersecurity assessment of different components, one of the first steps is

to create a threat model. In D2.3, a general threat modelling process is described that also can be

applied to the systems under the scope of Zero-SWARM. A detailed description of each phase is drafted

in D2.3 [40].

Specifically, in this deliverable, a threat modelling of OPC-UA, Modbus and MQTT protocols, widely

used in the industry and specifically in the Zero-SWARM project, has been carried out. In the following

list, a description of each of the threat modelling phases for the specific implementation in Zero-

SWARM has been carried out:

 Form a team: in this case, the requirements were obtained from the project use cases.

Analysing the needs of the different use cases, it has been decided to analyse the

aforementioned three protocols (OPC-UA, Modbus and MQTT). The team composed by a use

case leader, participants and the cybersecurity expert partner will do a follow up of the

different steps of the threat modelling in order to validate or update with new requirements.

 Establish the scope: The scope selected for each system will require identification on the

industrial physical target, such as OPC-UA, Modbus, MQTT or others. The scope will also

require the identification of the TCP IP port and other network perimetral conditions to have

a holistic view of the protocol implementation in the project use cases.

 Determine likely threats: In our case, for the selected three protocols, we will need to

determine threats. This will require a vulnerability assessment study and will be carried out

using penetration testing modules that will be further describe in the section 5. At this moment

in the project, this is the stage of threat modelling.

 Rank each threat: Once the vulnerability analysis of the implementation of the three protocols

has been completed, a ranking of the detected vulnerabilities should be created, depending

on their criticality. This ranking will allow us to prioritise the mitigation of critical vulnerabilities

in the first part, leaving the less critical ones for the end.

 Implement mitigations: In this step, following the ranking done in the previous step,

vulnerabilities will be mitigated. These can be mitigated through the creation of patches, for

example, or if the criticality of the vulnerability is very low, the risk can be accepted and not

mitigated.

 Document results: Once the entire threat modelling process has been carried out, it should be

documented so that the same procedure can be followed if the threat reoccurs or to serve as

an example for modelling new threats.

4.1 Application of standardized methodologies

Project funded by Horizon Europe, Grant Agreement #101057083 29

IEC 62443 is a set of documents covering the cybersecurity needs for a complete solution in the field

of industrial automation and control systems. Figure 6 represents the sphere of influence of each of

the documents within a complete solution.

Figure 6: Example of the scope of the IEC 62443 standard documents

The figure shows three different roles: product supplier, system integrator and asset owner:

 A supplier of a product provides a component that must be integrated into a solution. IEC
62443-4-1 acts as a guide for suppliers to create industrial components that are cyber-safe.
These components should adhere to specific technical cyber security obligations highlighted
in IEC 62443-4-2. Implementing these requirements would ensure that products configured
for integration into a complete industrial system comply with cyber safety obligations.

 The integration is carried out by the system integrator by what is indicated in the document
IEC 62443-2-4 and IEC 62443-3-2, where it must be considered that there may be a multitude
of products.

 Finally, the asset owner is responsible for the system's operation in accordance with what is
indicated in the documents IEC 62443-2-1 and IEC 62443-2-4.

In the context of the project, two aspects are especially relevant: the supply chain, which is

fundamental in two stages:

 Development stage. At this stage, the component manufacturer is in the middle of the supply
chain and must control all the elements integrated internally/externally. To do this, the ISO/IEC
62443-4-1 standard in Practice 1 contemplates this type of situation in SM-9:

o SM-9: Security requirements for externally provided components. This process should
ensure that supply chain security is addressed with security best practices, including
making updates, deployment guides, and the vendor's ability to respond when new
vulnerabilities are discovered. Security in this process applies in turn to the provider's
products that are used by the development team if they meet some of the following
characteristics:

 Degree to which the product conforms to the security context.

 Degree of rigor applied to the implementation of the product.

 Degree of verification and validation of the security of the component.

Project funded by Horizon Europe, Grant Agreement #101057083 30

 Mechanisms for receiving and monitoring security incidents.

 Vulnerabilities identification

 Presence of sufficient security documentation.

 Degree of support of the product by the provider.

Secondly, and associated with the role of component provider, the IEC 62443-4-1 standard in Practice

5 contemplates the identification of vulnerabilities, where it is specified that fuzzing is necessary:

o SVV-3: Vulnerability testing. There must be a process focused on identifying and
detecting vulnerabilities in the product. This test must include:

 Test with malformed inputs to detect vulnerabilities such as fuzzing.

 Analysis of the attack surface to identify possible entry routes.

 Exploration of known black box vulnerabilities.

 For compiled software, software composition analysis on all executable
binaries.

 Dynamic tests of resource management at runtime.

4.2 Security by design (OPC-UA, MQTT)
Security by design is a fundamental consideration in implementing industrial communication systems.

In addition, security in industrial communication is of vital importance today, especially in the context

of industrial cybersecurity. Protecting critical systems is very important in a world where automation

and connectivity are fundamental to the efficient operation of industry. In this paper, we will explore

how to address security by design through three key points:

4.2.1 Mapping IEC 62443 – OPC-UA PART 2 SECURITY

One of the main pillars of security in industrial communication is effectively linking security principles

between different standards. This is especially important in industrial cybersecurity, where

interoperability and protection of critical systems are imperative.

IEC 62443 is an international standard focusing exclusively on cybersecurity in industrial automation

systems. It provides a robust framework for assessing and mitigating security risks in critical industrial

environments. On the other hand, OPC-UA is a widely adopted protocol for communication in

industrial environments, known for its efficiency and scalability. A powerful synergy is achieved using

IEC 62443 safety principles in OPC-UA.

This synergy enables consistent implementation of security measures from strong authentication to

data encryption. These measures are essential to ensure that only authorized devices and users can

access resources and that sensitive information is kept secure. The connection between IEC 62443 and

OPC-UA establishes a solid foundation for implementing secure systems in the industry, helping

protect critical systems and sensitive data.

4.2.2 OPC 11030 UA Modelling Best Practices

Security in OPC-UA is not limited to secure data transmission but extends to the efficient and secure

representation of information in industrial systems. OPC 11030 UA Modelling Best Practices is a

fundamental guide that provides detailed guidance on effectively modelling data in OPC-UA. Proper

data modelling ensures efficiency and security in implementing OPC-UA-based systems [13][14].

Project funded by Horizon Europe, Grant Agreement #101057083 31

This resource provides guidelines for defining data types, objects, and variables consistently and

securely. By following these best practices, organizations can design systems with a data structure that

is easy to maintain and simultaneously resistant to potential attacks or security breaches. This helps

ensure data integrity and information confidentiality, crucial factors in industrial environments where

accuracy and security are priorities [21][22].

4.2.3 Modern Protocol: OPC-UA vs MQTT

Choosing the right communication protocol is a strategic decision in any industrial application. In this

context, it is essential to consider the differences and advantages between two widely used protocols:

OPC-UA and MQTT.

OPC-UA was launched in 2008 to update the original OPC interoperability standard, designed for

secure and reliable data exchange in industrial automation. OPC is based on a client/server

architecture, where the OPC server becomes the hardware communication protocol, and any program

that needs to connect to the hardware becomes the OPC client software.

However, it is crucial to consider particular challenges before implementing an OPC or OPC-UA-based

architecture. The most commonly cited is the complexity of implementation, as the OPC-UA

specification document is 1.240 pages long. In addition, full implementation of OPC-UA can be

expensive, with high CPU resource requirements, development costs and ongoing support costs. OPC

is also inflexible and needs help handling the various heterogeneous data structures and devices in

today's industrial environment. In addition, it has limitations in handling multiple data consumers and

requires to provide the proper data decoupling needed for a one-to-many approach.

MQTT, on the other hand, is a transport protocol that originated in 1999. MQTT is a lightweight

network protocol based on the publish/subscribe (pub/sub) model that allows multiple data

consumers and is designed for resource-constrained devices and networks with limited bandwidth,

high latency or low reliability.

The MQTT specification is simple and easy to implement, with a specification document of

approximately 80 pages, and can be extended with the Sparkplug specification, which adds another 60

pages. MQTT is lightweight and flexible, focusing on exception-only reporting and minimizing the data

footprint. In addition, MQTT is cost-effective, is based on open standards, and provides TCP/IP layer-

level security.

A significant advantage of MQTT is its growing industry adoption, with multiple vendors natively

implementing MQTT-Sparkplug in both hardware and software. In addition, leading cloud platforms,

IoT platforms, edge computing platforms, big data and third-party applications support MQTT.

Within the Eclipse Tahu project, the Sparkplug specification defines how to use MQTT in real-time

industrial applications. Sparkplug establishes a standard namespace for MQTT topics, defines the

payload structure and manages session state for industrial applications, meeting the requirements of

real-time SCADA implementations. This facilitates the adoption of MQTT in applications that require

data communication between Operational Technology (OT) and Information Technology (IT), providing

contextual information that is essential for big data analytics, Machine Learning (ML) and Artificial

Intelligence (AI).

Importantly, although OPC-UA and MQTT have different approaches to handling data, they can work

Project funded by Horizon Europe, Grant Agreement #101057083 32

together harmoniously in specific scenarios. MQTT can be used to overcome some of the limitations

and challenges associated with OPC-UA, enabling efficient and secure data communication in Industrial

Internet of Things (IIoT) environments.

In summary, A Modern Protocol: OPC-UA vs. MQTT [7] is a valuable guide to help organizations decide

which communication protocol to use based on their security and efficiency needs in specific industrial

applications. Understanding the strengths and weaknesses of each protocol is essential to designing

secure and robust systems.

5 Penetration testing modules

5.1 Zero-SWARM penetration testing methodology
The general background and principles of penetration testing were given in section 3.1, in order to

concentrate mostly on technical aspects in this section. More specifically, as the Zero-SWARM project

focuses on CPSoS environments, the penetration testing modules to be developed in task T5.4 will

focus on these components. Specifically, in this first phase of the project, a fuzzer-based penetration

test module will be developed for the OPC-UA protocol that is used in the project (implemented with

Open62541) [5]. In parallel with the development of a fuzzer-based penetration testing module for the

OPC-UA protocol and in order to examine other well-used industrial communication protocols, a first

assessment of the Modbus communication protocol has been performed. A simulated industrial

environment has been set up to evaluate the vulnerabilities of the Modbus protocol in an industrial

production line. The methodologies used in both cases (OPC-UA, Modbus) will be thoroughly explained

in the following sections.

5.1.1 OPC-UA

The Open Platform Communication Unified Architecture (OPC-UA) is an open communication standard

that enables communication between industrial machines [3]. It is a protocol for transferring data in

the form of objects instead of discrete data points. This increases the accessibility of plant data by

allowing the information stored in a shared object to be reused. OPC-UA also has a service-oriented

model, improving the platforms' security and interoperability [4].

The OPC-UA transport protocol, among other things, offers a reliable and secure communication

infrastructure, as it manages lost messages, communication between nodes and failures. Security is

built into OPC-UA and has been a design goal since its inception. On top of the transport layer, a secure

channel using encryption and digital signatures protects messages from unauthorized alteration and

eavesdropping. Furthermore, this layer authenticates and authorizes specific instances of OPC-UA

applications using authentication procedures based on digital certificates. This allows administrators

to implement granular access control across critical infrastructures. A session connects a client

application and a server used to exchange information. OPC-UA servers must authenticate and

authorise users intending to establish client-side sessions. The specification supports three

mechanisms: username/password combinations, digital certificates, and WS-compliant user tokens

[23][24][25][26].

Open62541

It implements OPC-UA, making it a machine-to-machine communication protocol for industrial

automation and widely used in various industries such as manufacturing, energy, and transportation.

This implementation is done in C, allowing developers to create OPC-UA servers and application clients.

Project funded by Horizon Europe, Grant Agreement #101057083 33

This implementation is prepared to be portable, scalable and efficient [3].

The Open62541 project is open-source and encourages community contributions with a platform for

collaboration and enhancements. The entire project is on Github under the Mozilla Public License so

that developers can use and modify it [4].

The project aims to provide a flexible and robust framework for implementing OPC-UA functionality.

It supports several features of the OPC-UA standard, including different transport protocols (such as

TCP and HTTPS), security mechanisms (encryption, authentication, and authorization), and a wide

range of data types.

Open62541 is an increasingly used project in industrial automation since it is compatible with various

platforms and follows the OPC-UA standard.

OPC-UA Fuzzers

State of the art study of fuzzers details several fuzzers, and each has its characteristics, and the targets

to which they are directed are also usually different. Therefore, when analyzing fuzzers for testing OPC-

UA systems, it is first necessary to analyze the targets to which they are directed. Those directed to

files will be unable to test them properly since only coding errors would be detected, not configuration

errors. Therefore, different fuzzers have been analyzed to see which is most suitable for testing OPC-

UA, specifically Open62541, due to this implementation will be used to test project implementation in

Zero-SWARM.

5.1.2 Modbus TCP/IP communication protocol

Modbus, originally developed in the late 1970s, has cemented its place as one of the most prevalent

communication protocols in industrial automation and control systems. Its straightforward design and

ability to operate over a variety of physical media, including serial and Ethernet connections, have

made it a preferred choice for connecting devices such as Programmable Logic Controllers (PLCs),

sensors and Human-Machine Interfaces (HMIs). Modbus simplifies the process of acquiring data from

sensors, controlling actuators and monitoring industrial processes, contributing significantly to the

efficiency and productivity of industrial systems.

Modbus encompasses several variants, including Modbus RTU (Remote Terminal Unit), Modbus ASCII,

and Modbus TCP/IP. Modbus RTU and ASCII primarily operate over serial connections, while Modbus

TCP/IP uses Ethernet. RTU is known for its binary encoding, making it more efficient for serial

communication, while ASCII employs ASCII characters for human readability. Modbus TCP/IP, on the

other hand, is suitable for Ethernet-based networks, offering faster data transfer speeds and broader

compatibility.

This communication protocol boasts several key features that make it highly desirable in industrial

environments. It employs a master-slave architecture, where a master device initiates requests and

slave devices respond with data. This simplicity facilitates easy integration and troubleshooting.

Additionally, Modbus supports multiple data types, including discrete inputs, coils, input registers and

holding registers, making it versatile for various data exchange requirements. Its ability to

communicate over long distances and its resilience in noisy industrial environments further contribute

to its popularity.

On the other hand, while Modbus offers numerous advantages, it is not without limitations. One

significant drawback is its lack of built-in security features. Traditional Modbus implementations do

Project funded by Horizon Europe, Grant Agreement #101057083 34

not include authentication or encryption, which can leave industrial systems vulnerable to

unauthorized access and cyberattacks. As a result, security measures such as VPNs, firewalls and

network segmentation are often necessary to protect Modbus-enabled systems from potential

threats.

As industrial systems evolve towards the Industrial Internet of Things (IIoT), Modbus continues to play

a primary role. With the emergence of gateways and converters, Modbus devices can seamlessly

integrate into IIoT ecosystems, allowing for remote monitoring, predictive maintenance and real-time

data analysis. Modbus remains a foundational protocol in the transition to more interconnected and

data-driven industrial processes.

In summary, the Modbus communication protocol has established itself as a fundamental tool in

industrial environments, enabling efficient and reliable data exchange among various devices. Its

simplicity, versatility and widespread adoption continue to make it a cornerstone of industrial

automation and control systems. However, as cybersecurity concerns grow, it is crucial to implement

appropriate security measures when deploying Modbus in industrial networks to safeguard against

potential threats.

5.2 Vulnerability analysis of CPS
5.2.1 OPC-UA communication protocol

OPC-UA (Open Platform Communications Unified Architecture) is a widely used communication

protocol in industrial automation and control systems. OPC-UA penetration testing involves assessing

the security of OPC-UA implementations to ensure that they are resilient against potential

cyberattacks. An overview of the process:

 Scope definition: Define the scope of the penetration test, including the OPC-UA servers,

clients, and related components to be tested. Determine the goals and objectives of the test.

 Information gathering: Gather information about the target OPC-UA systems, including

network architecture, communication protocols, OPC-UA endpoints, and versions.

 Vulnerability analysis: Identify potential vulnerabilities in the OPC-UA implementation. This

could involve manual analysis of configuration files, network traffic analysis, and the use of

automated scanning tools.

 Authentication & authorization testing: Assess the effectiveness of authentication

mechanisms and access controls within the OPC-UA infrastructure. Verify that only authorized

users have the appropriate permissions to access resources.

 Encryption and data integrity: Evaluate the encryption and data integrity mechanisms used in

OPC-UA communication. Ensure that sensitive information is protected during transmission.

 Secure communication: Test the implementation's adherence to secure communication

practices, such as enforcing the use of secure OPC-UA endpoints and disabling insecure

encryption algorithms.

 Fuzzing & protocol testing: Utilize fuzzing techniques and specialized OPC-UA protocol testing

tools to send malformed or unexpected messages to the OPC-UA servers and clients. Monitor

for crashes, unexpected behaviours, or vulnerabilities triggered by these inputs.

 Boundary testing: Test the system's behaviour when subjected to boundary conditions, such

as sending extremely large or small data payloads, to identify potential buffer overflows or

underflows.

Project funded by Horizon Europe, Grant Agreement #101057083 35

 Error handling & resilience testing: Assess how the OPC-UA implementation handles errors,

exceptions, and unexpected situations. Evaluate the system's resilience against Denial-of-

Service (DoS) attacks.

 Privilege escalation testing: Attempt to escalate privileges within the OPC-UA environment,

checking for potential vulnerabilities that could allow an attacker to gain unauthorized access.

 Reporting: Document all findings, including vulnerabilities, weaknesses, and

recommendations for remediation. Provide a detailed report to the organization with

actionable steps to improve the security of their OPC-UA implementation.

Fuzzing Penetration Testing in OPC-UA:

Fuzzing is a specialized penetration testing technique [9] that involves sending intentionally malformed

or unexpected inputs to a target system to trigger vulnerabilities and uncover security weaknesses.

Fuzzing is particularly useful for finding memory-related vulnerabilities like buffer overflows, format

string vulnerabilities, and more. It can be automated and run continuously to identify new

vulnerabilities that might emerge as the software evolves over time.

In the context of OPC-UA, fuzzing testing focuses on identifying vulnerabilities in the OPC-UA

communication protocol and its implementations:

 Fuzzing tool selection: Choose or develop a fuzzing tool that is capable of generating invalid

or unexpected OPC-UA messages and sending them to OPC-UA endpoints.

 Input generation: Configure the fuzzing tool to generate a variety of inputs, including

malformed OPC-UA messages, to test different aspects of the protocol.

 Message parsing and handling: Send the generated inputs to the target OPC-UA server or

client and observe its behavior. Monitor for crashes, exceptions, unexpected responses, or

abnormal behaviors.

 Code coverage analysis: Analyze the code coverage achieved during fuzzing to understand

which parts of the OPC-UA implementation are exercised by the generated inputs. This helps

identify untested or potentially vulnerable code paths.

 Error detection: Identify how well the OPC-UA implementation detects and handles errors

resulting from the malformed inputs. Look for cases where the system fails to gracefully handle

unexpected data.

 Vulnerability identification: If crashes, unexpected behaviors, or other anomalies are

detected, investigate these issues further to determine if they represent genuine

vulnerabilities.

 Reporting: Document the results of the fuzzing testing, including the vulnerabilities found,

their potential impact, and recommendations for remediation. Provide guidance on improving

the robustness of the OPC-UA implementation against fuzzing attacks.

Fuzzing testing in OPC-UA aims to uncover vulnerabilities that might not be easily identifiable through

traditional testing methods. It helps organizations ensure the reliability and security of their OPC-UA

communication and minimize the risk of cyberattacks targeting industrial control systems.

5.2.2 Modbus TCP communication protocol

While Modbus offers significant advantages in terms of simplicity and efficiency, it is not immune to

vulnerabilities that can potentially jeopardize the security and integrity of industrial networks. As

Project funded by Horizon Europe, Grant Agreement #101057083 36

industries increasingly rely on Modbus for real-time monitoring and control, it becomes imperative to

provide a vulnerability analysis to identify and address potential security threats. This analysis

encompasses various aspects, including authentication and encryption challenges, the susceptibility of

function codes to exploitation, network-based attacks, logging and monitoring limitations, firmware

and software vulnerabilities, insider threats and the absence of redundancy and failover mechanisms.

By thoroughly understanding these vulnerabilities and implementing robust security measures,

organizations can fortify their Modbus-enabled systems against potential risks and ensure the

continued reliability of critical industrial processes. The following list groups some of the most well-

known vulnerabilities related to Modbus.

1. Authentication and encryption vulnerabilities:

Traditional Modbus implementations often lack robust authentication and encryption mechanisms,

leaving industrial networks vulnerable to unauthorized access and data interception. Attackers can

exploit this weakness to gain unauthorized control over industrial devices or eavesdrop on sensitive

data transmissions. To address this vulnerability, organizations should consider implementing secure

communication channels using technologies like Virtual Private Networks (VPNs) or encryption

protocols to protect Modbus traffic from unauthorized access and tampering.

2. Vulnerable Function Codes:

Modbus function codes, which are used to execute specific actions like reading or writing data to

registers, can introduce security risks if not adequately protected. Some function codes can be

exploited by malicious actors to manipulate data or take control of industrial processes. It's crucial to

implement strict access controls and role-based permissions to restrict the execution of critical

Modbus function codes to authorized personnel only. Regularly reviewing and updating these access

permissions is essential to maintaining a secure environment.

3. Network-based attacks:

Modbus devices connected to Ethernet networks, especially Modbus TCP/IP, are susceptible to various

network-based attacks. These attacks can include port scanning, Denial-of-Service (DoS) attacks, and

intrusion attempts. To mitigate these risks, organizations should consider implementing network

segmentation, firewalls, and intrusion detection systems to isolate and protect Modbus networks from

external threats. This helps reduce the attack surface and enhances the security of critical industrial

systems.

4. Logging and monitoring challenges:

Many Modbus implementations lack comprehensive logging and monitoring capabilities, making it

challenging to detect and respond to security incidents effectively. To address this vulnerability,

organizations should invest in centralized logging and monitoring solutions that capture and analyze

Modbus traffic for anomalies or suspicious activities. Real-time alerting can enable security teams to

respond promptly to potential threats and incidents, enhancing overall security posture.

5. Firmware and software vulnerabilities:

Modbus devices and associated software may contain vulnerabilities that can be exploited by attackers

to compromise the integrity and availability of industrial systems. Regularly applying security patches

[15] and firmware updates is crucial to mitigate these vulnerabilities. Organizations should also stay

informed about vendor advisories and follow best practices when deploying and configuring Modbus

devices to reduce the risk of exploitation.

6. Insider threats:

Project funded by Horizon Europe, Grant Agreement #101057083 37

Insider threats, including employees or contractors with access to Modbus systems, can pose

significant risks if they misuse their privileges. To address this vulnerability, organizations should

implement least privilege principles, conduct thorough background checks on personnel, and establish

proper access controls and auditing to monitor and mitigate insider threats effectively.

7. Lack of redundancy and failover:

Many Modbus systems may lack redundancy and failover capabilities, making them susceptible to

disruptions caused by hardware failures or network outages. Implementing redundancy and failover

mechanisms can ensure continuous operation of critical Modbus systems in the event of failures,

enhancing the reliability and resilience of industrial processes.

5.3 OPC-UA Penetration testing toolset
Figure 7 shows the general architecture diagram of the Metasploit and Fuzzer components that will be
part of the module.

Figure 7: Metasploit and Fuzzing modules architecture

Two main machines can be identified in the system, SRV_Metasploit and SRV_Fuzzer, each playing a

crucial role in the operation of the environment.

SRV_Metasploit hosts a number of components essential to our operation. On the one hand,

Metasploit, a powerful cybersecurity platform, and on the other hand, all the libraries necessary for

its proper functioning.

The SRV_Fuzzing machine will be in charge of fuzzing the OPC-UA system. Inside it, the Boofuzz fuzzer

resides, which is being adapted to discover vulnerabilities and weaknesses in the OPC-UA system.

However, this machine not only hosts the fuzzer, but also contains the program to run it efficiently and

accurately. Furthermore, this machine acts as the central communication point with the Metasploit

module hosted on the SRV_Metasploit machine, ensuring a smooth and coordinated interaction

between the components.

5.3.1 Fuzzer

The main goal of fuzzing is to trigger unhandled exceptions, crashes, or unexpected behaviour that

might indicate the presence of vulnerabilities [16][17][18][19][20][32][33][34]. The information below

explains how fuzzing works:

 Input Generation: Fuzzing involves generating a wide range of input data, which can include

malformed or unexpected data packets, files, or commands. These inputs are designed to

stress the target application's input-handling mechanisms.

Project funded by Horizon Europe, Grant Agreement #101057083 38

 Input Mutation: Fuzzing tools take the generated inputs and mutate them by modifying

specific bytes, characters, or structures. This creates a diverse set of inputs to explore different

code paths.

 Execution and Monitoring: The mutated inputs are fed into the target application, and the

application's behavior is closely monitored during execution. The goal is to identify crashes,

memory leaks, unexpected error messages, or any other signs of vulnerabilities.

 Coverage Analysis: Some advanced fuzzing tools can also analyze code coverage, identifying

which parts of the code are executed with the given inputs. This helps testers understand the

reach of their fuzzing efforts.

 Corpus Management: Fuzzing tools often maintain a corpus, which is a collection of inputs

that caused interesting behavior or crashes. Testers can evolve this corpus over time to focus

on specific code paths or potential vulnerabilities.

 Triage and Reporting: When a crash or unexpected behavior is discovered, the tester examines

the issue to determine if it's a legitimate vulnerability. Valid vulnerabilities are documented

and reported to the development team for remediation.

Figure 8: Phases of the fuzzing process

Figure 7 shows the fuzzing process designed in Zero-SWARM. First, a preparation phase is carried out
where the system to be tested and the format of the inputs it executes are identified. This is a phase
before the execution of the fuzzer. Once this is done, the generation of the input patterns begins; these
are executed in the system, and their output is monitored and analyzed. This process will be repeated
repeatedly using the system output as a source of information to generate the new entries.

5.4 Initial validation tests for the penetration test modules
5.4.1 OPC-UA simulation testbed

The complete architecture of the platform that will test the penetration test module has been
designed. A modular and scalable platform has been designed, i.e. each module will perform a specific
function, but will be interconnected to operate together. The system consists of the following six
modules:

 Telemetry-server: This component will be in charge of capturing traffic during the course of
the penetration test in order to have the evidence and analyse the data once the penetration
test is finished.

Project funded by Horizon Europe, Grant Agreement #101057083 39

 OPC-UA server: This component is responsible for sending data via the OPC-UA protocol to
clients. The data to be sent are simulated in this first version of the validation environment.

 Two OPC-UA clients: OPC-UA clients consume the data sent by the server.

 Penetration testing module: this module runs the fuzzer that will detect OPC-UA
vulnerabilities. The penetration testing will be launched using Metasploit

Figure 9: Preliminary penetration testing module validation environment

Validation test proves:

5.4.2 Modbus TCP simulation testbed

A major obstacle in the field of industrial cybersecurity is the high expenses associated with acquiring

the necessary devices and software licenses for gaining hands-on experience in operating OT systems

and procedures. Virtualization emerges as a valuable solution to surmount this hindrance, allowing

individuals to familiarize themselves with the intricacies of ICS protocols and features at a

comparatively modest initial expense.

Project funded by Horizon Europe, Grant Agreement #101057083 40

Figure 10: Physical architectural diagram of simulated environment

As illustrated in Figure 10, the simulated industrial environment comprises several components. All of

these components were installed on a Windows 11 host machine with the following specifications:

Intel Core i5-6600 CPU @ 3.30 GHz, 40GB RAM, and 2x 1TB SSD storage. These components were

deployed either as Virtual Machines (VMs) or directly installed on the host.

 pfSense: Software for simulating the network equipment

 SCADABR: Software for simulating the HMI

 OpenPLC: Software for simulating the PLC

 OpenPLC Editor: Complementary software in order to program the PLC activities

 Factory IO: Software for simulating the RTU (driver) and the sensors & actuators (scene)

 Kali Linux: Operating system simulating the malicious actions against the Modbus TCP

simulation environment

pfSense

pfSense is a widely used open-source firewall and routing software built on the FreeBSD operating

system. Its origins trace back to 2004 when it emerged as a fork of the m0n0wall project. Over the

years, pfSense has evolved into a versatile and powerful solution, making it a popular choice in the

realm of network security and management. Widely known for its adaptability and scalability, pfSense

caters to the diverse networking needs of businesses, educational institutions and individuals seeking

to bolster the security and efficiency of their network infrastructure.

At its core, pfSense operates as a firewall and router, delivering critical services such as Network

Address Translation (NAT), VPN support or traffic shaping. What sets pfSense apart is its user-friendly

web-based interface, designed to give accessibility to users to take advantage of the majority of its

capabilities. This feature empowers administrators to efficiently manage network traffic, allowing for

the implementation of Quality of Service (QoS) policies to optimize bandwidth allocation and ensure

that essential applications receive the requisite resources. Furthermore, pfSense's strength lies in its

extensibility, boasting a robust package system that enables users to enhance its capabilities with

additional functionalities. These can include intrusion detection and prevention systems (IDS/IPS),

content filtering and proxy services. This flexibility and the wealth of features make pfSense a

formidable choice for those seeking a versatile and powerful network security and routing solution.

SCADABR

Project funded by Horizon Europe, Grant Agreement #101057083 41

SCADABR is a robust and highly adaptable open-source Supervisory Control and Data Acquisition

(SCADA) system. It is a valuable tool for industries requiring real-time monitoring and control of their

processes and equipment. Renowned for its web-based interface, proficiency in historical data

management and extensive customization features, SCADABR has garnered popularity among

organizations seeking cost-effective and versatile SCADA solutions. This SCADA system operates within

a dedicated Ubuntu Server Virtual Machine (VM) and establishes a virtual interface connection through

pfSense. This meticulously configured setup ensures both efficient and secure network connectivity,

enabling comprehensive monitoring and control capabilities for industrial processes and equipment.

In this current setup of the industrial testbed, SCADABR will not be used since no Human Machine

Interface (HMI) was required.

OpenPLC

OpenPLC stands as a versatile and open-source Programmable Logic Controller (PLC) platform,

extending the capability to design, simulate and deploy industrial automation solutions. Its versatility

lies in its compatibility with diverse hardware platforms, programming languages and communication

protocols. Combined with its simulation capabilities, OpenPLC emerges as an invaluable resource for

both industrial automation engineers and enthusiasts alike, offering a cost-effective and highly

customizable PLC solution. This platform operates seamlessly within an Ubuntu Server VM,

establishing a connection through the same network interface created with pfSense. This strategic

network configuration ensures efficient communication among pfSense, SCADABR and OpenPLC,

fostering a cohesive ecosystem for industrial automation management and control.

OpenPLC Editor

The OpenPLC Editor is a software tool that functions as an Integrated Development Environment (IDE),

specifically tailored for the creation and editing of control logic programs designed for the OpenPLC

platform. This application is rich in features, offering a wide range of capabilities aimed at streamlining

the development, testing and management of control logic programs. By simplifying the design and

deployment of control systems, the OpenPLC Editor emerges as an invaluable resource for industrial

automation engineers and developers who work with OpenPLC.

It's important to note that the OpenPLC Editor operates directly on the host machine, rather than

within a VM. It serves as a complementary tool to the OpenPLC platform. The output files this editor

generates are subsequently loaded onto OpenPLC to program and execute processes on the PLCs.

Notably, OpenPLC supports multiple programming languages, including Ladder Logic, Structured Text,

Instruction List, Function Block Diagram and Sequential Function Chart, all of which adhere to the IEC

61131-3 standard. This flexibility accommodates diverse programming needs within the realm of

industrial automation.

Factory IO

Factory IO is a robust and interactive simulation software specifically designed for educational and

training applications within the area of industrial automation and control systems. Its primary function

is to offer a virtual environment that empowers users to conceptualize, experiment with and validate

a multitude of industrial automation scenarios, all without the requirement for physical hardware.

Factory IO is a commercial software, providing a variety of subscription plans to cater to different user

needs. It is installed directly on the host machine and leverages the pfSense network interface,

facilitating direct communication with the other interconnected components. This seamless

Project funded by Horizon Europe, Grant Agreement #101057083 42

integration enhances its utility in creating comprehensive and immersive industrial automation

simulations for educational and training purposes.

Kali Linux

Kali Linux stands out as a potent and widely adopted Linux distribution, meticulously designed to cater

to the needs of cybersecurity professionals and enthusiasts. Renowned for its comprehensive toolkit,

frequent updates and robust community backing, Kali Linux serves as an indispensable asset for

individuals engaged in ethical hacking, penetration testing or cybersecurity evaluations. In the context

of this task, the Kali Linux operating system is deployed within a distinct VM, enabling seamless

communication with other VMs through the established network interface. This configuration ensures

that Kali Linux remains a versatile and essential tool for conducting various cybersecurity tasks and

assessments.

Figure 11: Simulated industrial environment showcasing the interconnections of all tools

Figure 11 illustrates the previously mentioned tools of which the industrial Modbus TCP testbed

consists of. As seen, pfSense, SCADABR, OpenPLC and Kali Linux are independent VMs operating inside

the same network, created by pfSense. Factory IO runs independently on the host machine, allowing

the seamless Modbus TCP connection packet flow between OpenPLC and Factory IO. A screenshot of

the scene designed in Factory IO can be found in the next figure, depicting two production lines that

lead to two grippers, “baking” the product and then through a common industrial belt is lead the

products to the end of the production line. This is only a very simple industrial scenario, showcasing

the Modbus TCP communication between a PLC and a Remote Terminal Unit (RTU). This allows us to

understand how Modbus TCP works and allows us to further examine the cybersecurity of industrial

Modbus TCP communications.

5.4.2.1 Modbus TCP simulation testbed results

The main focus in this first phase of task T5.4, regarding Modbus penetration testing, includes mainly

the first step of penetration testing, namely the reconnaissance phase – or information gathering. It is

considered to be the most important one, as it provides us with important information that will allow

us to map the production environment and its actions, in order to formulate and execute a precise

attack. In most of the cases the attacker will probably make use of a hacking OS, such as Kali Linux or

Parrot OS. Therefore, the choice of Kali Linux, not only represents an actual attacker, allowing us to

familiarize with his/her toolset, but also includes the required software, that will enable us to monitor

Project funded by Horizon Europe, Grant Agreement #101057083 43

and interpret communication and data exchanged between our targets.

Figure 12: Factory IO simulated scene

The initial step was to pinpoint ourselves in the current subnet/network. Though, the simulation

testbed is given, and we are aware of all the components the systems consist of, it is always considered

best practice to have an overview of the current network we are working in. This assists us not only by

providing us the required targets, but also by allowing us to carefully examine the whole network

and/or subnet for potential “threats” – tools that would comprise our attacking position. In order to

do so, we use the terminal console of Kali Linux and insert the command “ifconfig” that allows us to

find the IP address and check the subnet mask. What we notice, is that the subnet mask is

255.255.255.0, meaning that we are currently in a CLASS C network with CIDR /24 notation. This

implies that in our network we could potentially have 254 assets, may that be computers, production

machines, servers, etc.

Figure 13: Nmap execution to find IP addresses

Project funded by Horizon Europe, Grant Agreement #101057083 44

By having this initial valuable information, the next step includes the execution of Nmap, a tool that is

used to discover hosts and services on a computer network by sending packets and analyzing the

responses. As already mentioned, we are somehow familiar with the topology of the simulated

network, so one might think that performing this step is not necessary. However, this is far from true,

since the nmap allows us to specifically distinguish the production components interacting within the

network and will be easier for us, posing as attackers, to monitor the data exchange between them.

The command that will give in our terminal is: nmap 192.168.88.0/24. The reply will return with 4 IP

addresses – all parts of our simulated environment. More specifically, we have the following results,

as presented in Figure 13:

Only with one command we were able to retrieve some basic information: in our network, there are

currently 4 assets (SCADABR is not part of this simulation) and we need to understand which

component is which.

We already know by “ifconfig” that we previously executed that .207 is our own IP. From ports 53

(dns), 80 (http) & (https), we can understand that the only device that requires dns is actually our

pfSense router. As one may notice, by process of elimination, we are able to focus in the two machines-

of-interest. However, none of them seems to be a production device using Modbus protocol. By

default, Nmap only scans the most popular ports of each protocol, so in the case of Modbus TCP, port

502 TCP was only scanned after the correct configuration of the Nmap command, which is the

following:

$ sudo nmap -sT -sV -O -A -vv -p- [IP]

The above command is executed for both IPs 192.168.88.100 & 192.168.88.201. The following figures

(Figure 14 and Figure 15) illustrate the results:

Figure 14: Nmap execution for 192.168.88.100 to find open ports

Figure 15: Nmap execution for 192.168.88.201 to find open ports

Now, the recognition is much easier allowing us to know in fact that Factory IO can be only deployed

and executed in Windows environment, thus asset with IP 192.168.88.100 is the machine-of-interest.

Indeed, we can see that apart from port 502 used in Modbus communication, a variety of Windows

services leave no shadow of doubt. So, the asset with IP 192.168.88.201 could only be the OpenPLC

Project funded by Horizon Europe, Grant Agreement #101057083 45

component. It is running on Linux OS using port 502, so now we can be sure about the identity of each

machine.

Once the IP addresses of each VM were identified and confirmed, since the followed approach is the

white box, Wireshark was executed in order to capture some exchanged packets between the OpenPLC

and the Factory IO.

We execute Wireshark from our Kali Linux VM and we start capturing the traffic of interface eth0,

which is in promiscuous mode and therefore able to monitor all network traffic. As we are only

interested in Modbus communication packets, we use the filter “tcp.port==502”. This allows us to

follow all data exchanged between those two components.

The communication begins with the standard 3-way handshake, as all TCP connections require to do

so. It is imperative to understand which machine initiates the communication, in order to be able to

distinguish the Modbus server from the client. Since the one who has the production lines’ instructions

and transmits them is usually the OpenPLC, we expect to see that it is the one sending the first SYN to

FactoryIO. FactoryIO replies with the standard SYN/ACK and as the last part of the handshake requires,

OpenPLC responds with an ACK and communication channel is ready for use.

We can notice from the early beginning that there is a loop in the communication, which is described

and well-documented in “Introduction to Modbus TCP/IP”. In our scenario, Modbus uses two standard

Modbus functions: The Read Discrete Inputs and the Write Multiple Coils. Each of the above cycles

consists of the query, the response and the ACK part. Having this information, will allow us to monitor

the communication easier and more effective.

For the purposes of this deliverable, we examine carefully a “Read Inputs” and a “Write Coils” request.

We can easily identify from the Wireshark packet capturing the following information:

1. Source and Destination Port. As already explained, since the OpenPLC initiates the

communication, it uses a random port, while the FactoryIO who is listening, awaiting

instructions uses port 502.

2. Both for request and response the same Transaction ID is used.

3. For the first time, we are obtaining the RTU’s ID number. In our simulation, the ID is 1, but in

an actual production environment, that number may vary or even have multiple IDs of multiple

RTUs.

4. From both request and response, we can see that the function code is 000 0010, which equals

to decimal “2”. This function code in Modbus actually means “Read Discrete Input”.

5. Last, but not least, the request requires 16 bits (8 and 8 bits) starting at 0 (as a Reference

number). In our environment, we configured OpenPLC and FactoryIO to use 2 production lines,

each of 8 total inputs. So, the first number (query digits 1 & 2), refers to the inputs of the first

production line, while the second one (query digits 3 & 4), refers to the inputs of the second

production line.

So, in this example, we see numbers 0016 4416 and we know that the first number refers to the 1st

production line. As a first step, we convert the number to binary and 0016 <==> 000000002

We know that the first bit starts at position 0 (reference number), so we have the following bits in the

following positions:

Position 0 1 2 3 4 5 6 7

Project funded by Horizon Europe, Grant Agreement #101057083 46

Bits 0 0 0 0 0 0 0 0

We apply the same technique for the second production line. First converting the 4416 to binary, gives

us the following bits: 010001002

Position 0 1 2 3 4 5 6 7

Bits 0 1 0 0 0 1 0 0

The response of the above is able to tell us what the status of each input is (1=on, 0=off), however we

cannot retrieve the information of which input corresponds to which sensor. This is an issue that we

will return to it after a while.

At this point we need the assistance of OpenPLC. From the captured values and by using the registers,

we can understand which sensor corresponds to each component in our production lines. For example,

if we have a payload of 01110110010000002, we can map it as follows:

Register %IX100.0 %IX100.1 %IX100.2 %IX100.3 %IX100.4 %IX100.5 %IX100.6 %QX100.7 %IX101.0 %QX101.1

Bit 0 1 1 1 0 1 1 0 0 1

Now, we can see the exact state of all our sensors. It is worth mentioning, that the last 6 bits are not

used, since in our schema, both production lines use only 10 sensors. Yet, we still don’t know, which

value corresponds to each component. We can use the assistance of OpenPLC, that reveals to us the

mapping of the Registers with the Point Names:

Figure 16: Mapping of the registers with the point names

Now, the idea starts getting clearer. We are able to tell what the sensors are and in what production

Project funded by Horizon Europe, Grant Agreement #101057083 47

line they belong. From the descriptive Point Names, we can always assume what are the performed

actions. However, we need to understand which sensor belongs to each production line. In order to

achieve this task, we need to correspond the point names with the actual components by using the

FactoryIO and matching the values. By the end of this task, we will know with certainty how the sensors

are correlated to the simulated environment. Following the next reconnaissance phase, we analyze

the second request, namely the “WRITE COILS” function.

By analyzing the Modbus packets correlated to the “WRITE COILS” function, the below information

could be retrieved:

1. Source and Destination Port. Same applies as in the previous example: the OpenPLC initiates
the communication by using a random port and the FactoryIO, who is listening, awaits
instructions in port 502.

2. Both for request and response the same Transaction ID is used.
3. In this field, we are expecting to see the RTU’s ID number, which is 1, but -as already

mentioned- in an actual production environment, that number may vary or even have multiple
IDs of multiple RTUs.

4. From both the request and response, we can see that the function code is 000 1111, which
equals to decimal “15”. This function code in Modbus actually means “Write Multiple Coils”.

5. Last, but not least, the “WRITE COILS” function requires 14 bits (7 and 7 bits) starting at 0 (as
a Reference number). We configured OpenPLC and FactoryIO in our environment to use two
production lines, each of 7 total outputs. So, the first number refers to the outputs of the first
production line, while the second one refers to the outputs of the second production line.

In this case, we need to examine different frames of the captured packets in order to better understand
the use of the actuators. This will allow us to see the changes as they occur and map them, in order to
find out which actuator corresponds to which component in FactoryIO. So, in this example, let’s see
the output for both production lines:

Regis

ter

%QX10

0.0

%QX10

0.1

%QX10

0.2

%QX10

0.3

%QX10

0.4

%QX10

0.5

%QX10

0.6

%QX10

0.7

%QX10

1.0

%QX10

1.1

%QX10

1.2

%QX10

1.3

%QX10

1.4

%QX10

1.5

%QX10

1.6

Bit 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

Now, we know the exact state of all our actuators. But we still do not know, which value corresponds

to each component. We can use the assistance of OpenPLC, that will allow us to map the registers to

the point names:

Project funded by Horizon Europe, Grant Agreement #101057083 48

Figure 17: Mapping of the registers with the point names

As in the previous step, we are now in position to distinguish the actuators and map them with the

production line. From the descriptive point names, we can always assume which are the performed

actions. However, we need to understand which actuator belongs to each production line. In order to

perform this task, we need to correspond the point names with the actual components by using the

FactoryIO and matching the values.

At this point, it is worth mentioning that in all Modbus communications (TCP or RTU), there are no

security mechanisms implemented by design, meaning that someone could have full access to

information leading to reading and writing all data. Consequently, the packet sniffing with Wireshark

revealed several information that could be used to compromise the Modbus TCP communication.

Based on the information gathered using the Wireshark tool and taking advantage of the known

information on the sensors and actuators in Factory IO, also including the mapping of the components

used in the scene, we are able to recognize the packet sequences they receive. By listing the exact bits

they receive, the researcher has the ability to intervene and execute a Man-in-The-Middle (MiTM)

attack and inject different bits than those sent regularly. This action was conducted using the

Metasploit framework of Kali. More specifically, it provides a Modbus tool that allows the user, first of

all to read the registers and then perform the writing of a different byte. This leads to the malfunction

of the production line, causing several damage and financial loss. Besides Metasploit, another Modbus

penetration testing tool was examined, called Smod, but the attacks conducted through this tool did

not affect the operations of the testbed at all.

All in all, the above-mentioned work regarding the Modbus communication protocol was submitted as

a research paper and was accepted after review for presentation at the IEEE Conference on Standards

for Communications and Networking (CSCN 2023) with the title of the paper being “Securing Modbus

TCP Communications in Ι4.0: A Penetration Testing Approach Using OpenPLC and Factory IO”.

5.5 Zero-SWARM exploitation and vulnerability report
Figure 18 illustrates the use of the opcua_server_config module, which is used to obtain security

related information for OPC UA server instances, already being accessed. The module will report

available endpoints, request information about other servers this server knows about and iterate all

nodes looking for writable nodes. As depicted below, the steps to use the opcua_server_config module

Project funded by Horizon Europe, Grant Agreement #101057083 49

include:

1. Start msfconsole

2. use auxiliary/scanner/opcua/opcua_server_config

3. set rhosts <IP>

4. set rport <port>

5. run

Figure 18: Metasploit OPC-UA scanning process in progress

Figure 19 shows the available OPC-UA modules from the Metasploit platform that can be used to

examine an OPC-UA communication.

Figure 19: Available Metasploit OPC-UA related modules

For the purpose of this simulation environment, the UaExpert, a fully featured OPC-UA client was set

up and used. The basic framework of UaExpert includes general functionality like certificate handling,

discovering UA Servers, connecting with UA Servers, browsing the information model, displaying

attributes and references of particular UA Nodes. As depicted in Figure 19, the Project pane shows the

connected UA Servers and the open document plugins. The Address Space pane shows the UA Servers

information model. Depending on the Node selected in the Browser the Attribute and Reference

Windows show the attribute of the selected Node and its references within the meshed network of

the server’s address space.

Project funded by Horizon Europe, Grant Agreement #101057083 50

Figure 20: Configuration and User Interface of the OPC-UA client

6 Hypothesis testing plugin

6.1 Methodology used for the hypothesis testing realization
A brief presentation of the SigClust method with Soft Thresholds, as shown in [45] follows: Let

X=[x_1,x_2,...,x_n], x∈R^d, be a dataset of n observations each containing the values d different KPIs.

The method starts from the null hypothesis that the data of X come to form a single multivariate

Gaussian distribution N(μ,Σ). A test level α, e.g., α=0.95 is pre-specified to finally test the Hypothesis.

Let C_1 and C_2 be two disjoint sets resulting from the application of a clustering of the data points

contained in X i.e., C_1∪C_2={1,2,...,n}. Then, an indicator of the strength of the clusters can be

attained by the Cluster Index (CI), that is used as the test statistic of the method:

𝐶𝐼 =
∑ ∑ |𝑖∈𝐶𝑘

2
𝑘=1 |𝑥𝑖 − 𝑥‾(𝑘)||2

∑ |𝑛
𝑖=1 |𝑥𝑖 − 𝑥‾(𝑘)||2

where 𝑥‾𝑘 is the mean of cluster 𝑘 ∈ [1,2] while 𝑥‾ is the overall mean. Estimate values (𝜆1̂, . . . , 𝜆𝑑̂) for

the eigenvalues of 𝛴 must be computed. Let (𝜆1̃, . . . , 𝜆𝑑̃) be the eigenvalues of the sample covariance
matrix. The covariance matrix 𝛴 can be written as

𝛴 = 𝛴0 + 𝜎𝑁
2𝐼

for a low-rank positive semi-definite matrix 𝛴0. Let 𝑊0 be a positive semi-definite matrix 𝑊0 with
rank(𝛴0)=rank(𝑊0). Then the precision matrix 𝐶 can be defined, where:

𝐶 ≡ 𝛴−1 ≡ (𝛴0 + 𝜎𝑁
2𝐼)−1 =

1

𝜎𝑁
2 𝐼 − 𝑊0 (1)

To estimate 𝛴, the negative log-likelihood is minimized to using 𝐶 and the sample covariance

𝛴̃ =
(𝑋 − 𝑋‾)(𝑋 − 𝑋‾)𝑇

𝑛
,

to yield

𝑎𝑟𝑔𝑚𝑖𝑛𝑐[−𝑙𝑜𝑔|𝐶| + 𝑡𝑟𝑎𝑐𝑒(𝐶𝛴̃)],

Project funded by Horizon Europe, Grant Agreement #101057083 51

subject to (1) and 𝐶, 𝑊0 ≽ 0.Let 𝑀 ≥ 0, be a tuning parameter. An additional constrained is set to
control the signal versus the noise of the data:

𝑡𝑟𝑎𝑐𝑒(𝑊0) ≤ 𝑀

Finally,

𝜆𝑗̂ = {
𝜆̃𝑘 − 𝜏,if 𝜆̃𝑘 > 𝜏 + 𝜎𝑁

2

𝜎𝑁
2 ,if 𝜆̃𝑘 ≤ 𝜏 + 𝜎𝑁

2

where 𝜏 is obtained by solving

∑ (
1

𝜎𝑁
2 −

1

(𝜆̃𝑘 − 𝜏)+

)
+

𝑑

𝑘=1

Using the computed eigenvalues, the theoretic optimal CI value is obtained by

𝑇𝐶𝐼 = 1 −
2

𝜋

𝑚𝑎𝑥((𝜆1̂, . . . , 𝜆𝑑̂))

∑ 𝜆𝑖
𝑑
𝑖=1

The rest of the process has four steps:

1. Data from the null distribution is simulated: (𝑥1, . . . , 𝑥𝑑) are independent with 𝑥𝑗 ∼

𝑁(0, 𝑚𝑎𝑥(𝜆̂𝑗, 𝜎̂𝑁
2)).

2. This data is clustered using the k-means algorithm with k = 2; the corresponding CI value is
calculated.

3. By repeating steps 1 and 2 a large number of times, an empirical distribution of the values of CI
is obtained.Using the CI values obtained by the simulation, calculate a 𝑝 −value for the CI value
of 𝑋.

4. A conclusion can be derived based on test level 𝛼.

By using the p-value from the final step the following hypothesis is answered:
𝐻𝑜 The clusters come from the same distribution (𝑝 ≤ 0.05) or
𝐻1 The clusters come from a different distribution (𝑝 ≥ 0.05).

To apply this method to distinguish the difference between different mitigation action sets the

following procedure followed: Let 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛], 𝑥 ∈ ℝ𝑑, be a data set of n historical

observations each containing the values 𝑑 different KPIs with 𝑥𝑛 being the latest observation. Let 𝑥𝑛+1

be the KPI values occurring from modifying 𝑥𝑛. Some clustering algorithm is applied to all data,

resulting in a partition of clusters 𝐶 = {𝐶1, 𝐶2, . . . 𝐶𝑗}, 𝑗 ≤ 𝑛 for all data points. Let 𝐶𝐴,𝐶𝐵 be the clusters,

the data-points 𝑥𝑛 and 𝑥𝑛+1 belong to. If 𝐶𝐴 = 𝐶𝐵 the case is trivial, and no testing is required since

the points belong to the same cluster. Else, let 𝑥𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ⊂ 𝑋 be the subset of all points that belong

either in 𝐶𝐴 or 𝐶𝐵. Then, the Statistical Significance of Clustering methodology described above is

applied as described, answering the question: "Are 𝐶𝐴 or 𝐶𝐵 different in terms of their underlying

distribution and is this difference statistically significant?".

The figure below (Figure 21) illustrates the overview of the hypothesis testing module, which will be

developed in the context of this task T5.4. The evaluation of the performance of this tool will be

performed in the second phase of this task, taking advantage of the simulation platform developed

and described in section 7.

Project funded by Horizon Europe, Grant Agreement #101057083 52

Figure 21: High level overview of the Hypothesis testing module

7 Simulation platform for evaluation

In essence, the penetration test in question is a meticulously orchestrated evaluation of the inter-

device communication within the IEC 61499 environment, employing a carefully designed test

application and SoftPLC emulations. By continuously monitoring KPIs and scrutinizing the behaviour of

these critical devices, this test aims to provide invaluable insights into the reliability and security of

industrial automation systems, ultimately contributing to enhanced system resilience and

cybersecurity.

7.1 Test application design with IEC61499 cross communication over UDP
In the context of the penetration test conducted in T5.4, a specialized test application is meticulously

crafted within an IEC 61499 environment. This test application is ingeniously designed and consists of

two crucial Function Blocks, which are classified as CATs (Composite Automation Types). Within the

test environment, these CATs are distinctly labelled as PLC1 and PLC2. The fundamental function of

this test application is to evaluate and scrutinize the inter-device communication between two IEC

61499 devices, a task of paramount importance in the realm of industrial automation and control

systems. The objective is to ensure the robustness and security of data exchange between these critical

components.

As illustrated in the Figure 22 provided, PLC1 takes on the role of the initiator in this orchestrated

interaction. At precise one-second intervals, PLC1 diligently transmits a signal, encapsulating critical

data, to its counterpart, PLC2. The ingenuity of this setup lies in PLC2's responsive behaviour. It

promptly reciprocates by reflecting the received signal back to PLC1. This bi-directional communication

is pivotal in assessing not only the reliability but also the integrity of the data exchange process.

Project funded by Horizon Europe, Grant Agreement #101057083 53

Figure 22: Test application in IEC61499 Environment - UDP cross communication

To facilitate this distributed communication of an IEC61499 platform and emulate real-world

scenarios, the test harness leverages a IEC61499 UDP (User Datagram Protocol) communication node.

Within this context, the SoftPLC, an emulation of a real-world Programmable Logic Controller (PLC)

operating within the IEC 61499 environment, takes centre stage. This software-based PLC replica

serves as the backbone of the testing infrastructure, enabling the seamless exchange of data between

the two CATs (PLC1 and PLC2). These two SoftPLCs, acting as master and slave devices, engage in

synchronized communication over the UDP protocol.

As the test application is prepared for deployment, it is meticulously mapped to two instances of the

SoftPLC. This pairing simulates the actual deployment of PLCs in an industrial setting, allowing for a

comprehensive evaluation of their performance and security in a controlled environment. At the heart

of this assessment lies the monitoring and measurement of Key Performance Indicators (KPIs). These

metrics are diligently tracked throughout the testing process to assess and quantify the behaviour of

the PLCs under scrutiny. The KPIs encompass various aspects of the communication process, including

latency, throughput, CPU and memory consumption and error rates, shown in Figure 23:

Figure 23: Test results for KPI measurement on the IEC61499 environment

Enriching analytical capabilities, the test application provides an intuitive Human-Machine Interface

(HMI) that acts as the window into the inner workings of the IEC61499 automation platform and

communication system. This real-time HMI visualization empowers engineers, and operators to gain

immediate access to KPIs and test results. It is a tool of utmost significance in our pursuit of

Project funded by Horizon Europe, Grant Agreement #101057083 54

understanding, optimizing, and safeguarding the performance and security of industrial automation

systems.

7.2 Test application with MQTT communication between two IEC61499
platforms

This test application part within the MQTT communication node is an intricate dance of data

orchestrated through the MQTT protocol. It not only showcases the elegance of MQTT's

publish/subscribe methodology but also underscores our commitment to creating efficient and

dependable communication systems for industrial automation and beyond.

Within the MQTT communication node, our test application operates seamlessly within the MQTT

protocol framework. MQTT, known for its lightweight and efficient messaging paradigm, employs a

publish/subscribe method to facilitate communication between two MQTT clients. Each of these

clients boasts the capability to publish data under a designated Topic onto an MQTT broker and,

conversely, subscribe to data under specific Topics through the same MQTT broker. It's a versatile

system that offers flexibility in routing and managing data flows.

The MQTT broker, a pivotal component in this communication architecture, can be deployed either

within the confines of the IEC 61499 environment or externally, depending on the specific testing

requirements and architectural considerations. This flexibility ensures that our testing environment

aligns precisely with the real-world scenarios our application is designed to address.

In the IEC 61499 engineering environment, we've ingeniously integrated Service Interface Function

Blocks (SFBs) to streamline the process of creating applications that facilitate communication between

two MQTT clients. This sophisticated orchestration enables a seamless flow of data between these

clients.

Now, let's delve into the roles played by our CATs within this MQTT communication ecosystem. In the

master-PLC, we've incorporated a Signal Sender Function Block (FB) equipped with MQTT client

capabilities. This FB serves as the initiator, responsible for transmitting a signal at precise one-second

intervals. This signal is encapsulated within the MQTT_PUBLISH SFB and is delivered to the MQTT

broker under a distinct Topic name. On the flip side, our slave-PLC houses a Signal Receiver Function

Block (FB) also equipped with MQTT client functionality. This FB assumes the role of the receiver within

this dynamic communication dance. It subscribes to data using the very same Topic name used for

publication via the MQTT_SUBSCRIBE SFB. Once the data is received from the MQTT broker, it is

dutifully relayed back to the master-PLC CAT, completing the bi-directional data exchange.

Figure 24: Test application in IEC 61499 Environment - MQTT communication

Project funded by Horizon Europe, Grant Agreement #101057083 55

This synchronized communication dance, occurring at the cadence of one signal per second, provides

us with a unique opportunity to meticulously observe and evaluate the performance and efficiency of

our MQTT-based communication system. We will closely monitor the same metrics, as mentioned

above, to ensure that the test application operates robustly and reliably.

7.3 Test application with OPC-UA communication between two IEC61499
platforms

Within the context of Zero-SWARM, we're harnessing the power of OPC-UA as our interface of choice

for the integration of and communication with IT software modules. This versatile protocol plays a

pivotal role in facilitating communication in two crucial directions within our industrial ecosystem.

Firstly, OPC-UA serves as the linchpin between the Production line and the IEC61499 control

application. In this capacity, it enables seamless and robust communication, primarily for monitoring

purposes. The Production line communicates with the Edge Gateway through OPC-UA, providing real-

time insights into the operational status and performance metrics of the production processes. This

flow of information is essential for monitoring and optimizing the efficiency and productivity of the

production line.

Secondly, OPC-UA comes into play once again, this time serving as the communication conduit

between the Edge Gateway nodes and an AI software node. This interaction is central to the

integration of AI and automation, where data from the industrial processes is shared with AI algorithms

for advanced analysis and decision-making. The bidirectional flow of data between the IEC61499 node,

powered by the IEC61499 automation platform, and the AI software node ensures that intelligent

insights are gained and acted upon in real-time.

Now, let's zoom in on the specific test application scenario you've described. Here, the master PLC is

the focal point, equipped with an OPC-UA client. It assumes the role of the data initiator, sending

values at precise one-second intervals. These values encapsulate critical data related to the production

processes, which are essential for monitoring and decision-making, shown in Figure 25

Figure 25: Test application in IEC 61499 Environment – OPC-UA communication

On the other side of the equation, the slave PLC plays the role of the OPC-UA server. It receives the

incoming signals from the master PLC and mirrors them back to their source—the master PLC. This bi-

directional communication loop is instrumental in not only evaluating the efficiency and reliability of

the OPC-UA communication but also in assessing the responsiveness and robustness of the overall

system.

Project funded by Horizon Europe, Grant Agreement #101057083 56

Just as with other communication methods in our testing suite, we meticulously measure the same set

of KPIs. These KPIs include parameters such as responsiveness of the OPC-UA communication. By

scrutinizing these metrics, we gain invaluable insights into the performance of the OPC-UA-based

communication system, which is central to the smooth operation of Zero-SWARM.

In summary, our utilization of OPC-UA as a communication interface in Zero-SWARM underscores its

versatility and reliability in connecting production lines, Edge Gateway nodes, IEC61499 automation

platforms, and AI software nodes. This orchestrated symphony of data exchange ensures that

industrial processes run smoothly, are closely monitored, and can benefit from intelligent insights and

decision-making capabilities.

7.4 Test application with Modbus TCP (Master/Slave) communication
between two IEC61499 platforms

Our aim is to introduce Modbus as an additional load into our existing test application, effectively

simulating a fieldbus connection. This strategic addition enables us to probe the system further,

scrutinizing potential side effects while meticulously measuring the Key Performance Indicators (KPIs)

of the IEC61499 automation platform.

Modbus, a versatile application layer messaging protocol, assumes a pivotal role in this endeavour. It

facilitates client and server communications between devices, seamlessly bridging the gap on different

types of buses or networks. Modbus's robust architecture offers a plethora of services, each elegantly

specified by function codes, making it an ideal candidate for our communication needs.

In our sophisticated EcoStruxure Automation Expert environment, the configuration of Modbus is

orchestrated with precision through a hierarchical structure consisting of three interconnected layers.

Each layer, bound by a parent-child relationship, plays a distinctive role in ensuring seamless

communication and parameterization:

Bus Layer: At the foundational level, the Bus layer defines the communication type between the client

and server and outlines the blueprint for how communication will be orchestrated. It sets the stage for

a well-coordinated dance of data exchange. Within EcoStruxure Automation Expert, we deploy both

master and slave configurations for our test application. Here, one entity serves as an external

simulator, intrinsically penetrating the system with predefined values. This dynamic interplay is central

to our assessment of system behaviour under load.

Modbus Device Layer: Building upon the Bus layer, the Modbus Device layer takes centre stage by

defining the specific communication settings between itself and the counterpart Bus (e.g., IP address,

station ID, etc.). It acts as the bridge between the Bus and the actual data exchange. In our EcoStruxure

Automation Expert setup, various types of Modbus devices are at our disposal, and for our test

application, TCP is leveraged, ensuring robust and reliable communication.

Modbus Registers Layer: At the topmost layer of this hierarchy, the Modbus Registers layer comes into

play. It meticulously defines all variables that are to be communicated, specifying where and how they

are transmitted and clarifying their data types. This layer essentially encapsulates the core of the data

exchange process. In EcoStruxure Automation Expert, we are presented with a range of Modbus

register types, each with its own unique characteristics. Synchronizing the compatibility of the

Modbus-simulator used within the system is of paramount importance at this layer to ensure seamless

communication.

Project funded by Horizon Europe, Grant Agreement #101057083 57

As we embark on this journey of integrating Modbus into our test application, we are not only adding

an additional layer of complexity but also a wealth of opportunities for evaluating system performance

and robustness. By meticulously measuring KPIs and probing for side effects, we are poised to gain

valuable insights into the behaviour of the IEC61499 automation platform under various

communication scenarios, bolstering its reliability and resilience in industrial automation settings.

7.5 Combined load with external clients interacting with the IEC61499
platform

Expanding our scope of penetration testing within the realm of the IEC61499 automation platform, we

are poised to embark on another scenario of critical assessment. In this scenario, we introduce external

MQTT and OPC-UA clients into the equation, further intensifying the testing environment. This

strategic move aims to scrutinize and evaluate the behaviour of the IEC61499 platform under the

simultaneous influence of multiple loads, including the existing cross-application load and the Modbus

simulation load.

This multifaceted test scenario is designed to assess the IEC61499 platform's resilience, performance,

and security when subjected to a comprehensive array of loads, both internal and external. The

integration of MQTT and OPC-UA clients into the testing environment brings a new layer of complexity,

mirroring real-world scenarios where diverse communication protocols and sources converge within

an industrial setting.

To execute this scenario effectively, we rely on the capabilities of our penetration testing tools, as

illustrated in Figure 27.

These tools are instrumental in simulating the behaviour of external MQTT and OPC-UA clients,

thereby generating additional load on the IEC61499 platform. The external load is meticulously

controlled and manipulated to emulate various communication patterns, message volumes, and

frequencies, akin to what might be encountered in a production environment.

The orchestration of this comprehensive test scenario demands a fine balance between all the loads

involved.

Figure 26: Test application in IEC 61499 Environment – combined load

Project funded by Horizon Europe, Grant Agreement #101057083 58

7.6 Cybersecure and non-cybersecure use-cases in the IEC61499 automation
platform

The schematic diagram in Figure 27 below provides a visual representation of the security measures

implemented within our system. It uses color-coded lines to convey the status of security for various

connections, offering a quick and intuitive overview of our security infrastructure.

Green Line Connections: These connections are depicted in green, signifying that all components

linked by these lines benefit from robust TLS (Transport Layer Security) encryption. TLS is a well-

established cryptographic protocol that ensures secure and private communication between devices.

The presence of green lines assures us that data flowing through these pathways is protected from

unauthorized access and tampering.

Red Line Connections: Conversely, the red lines indicate connections between devices that are not yet

secured. This serves as a visual cue to draw attention to potential vulnerabilities in these

communication channels. It is a reminder that further security measures may be needed to safeguard

these connections adequately.

Figure 27: Cybersecure and non-cybersecure use-cases in the IEC61499 automation platform

Additionally, to bolster our security posture during penetration tests, we address specific scenarios

beyond the core IEC61499 cross-communication and external client communication discussed in

previous sections. These scenarios include:

Engineering Workstation Security:

Certificate Management: Our engineering workstation is fortified with robust certificate management

capabilities. This ensures that digital certificates, a fundamental component of secure communication,

are handled effectively. Certificates play a pivotal role in verifying the authenticity of devices and users,

enhancing the overall security of our solution.

Password Requirement: A stringent password requirement is in place to secure access to the

Project funded by Horizon Europe, Grant Agreement #101057083 59

engineering workstation. When creating a solution within the IEC61499 environment, users are

mandated to establish an account with a unique USER ID and password. This initial authentication step

is a crucial layer of defense against unauthorized access.

Deployment Security: During the deployment of our IEC61499 test application onto IEC61499 devices,

a robust access permission mechanism is enforced. Devices are explicitly asked for access permission

before the deployment process can proceed. Furthermore, the communication during deployment is

encrypted, ensuring that the application reaches its destination securely and without interference.

HMI Authentication and Security:

Credential-Based Authentication: Our Human-Machine Interface (HMI) incorporates a robust

authentication mechanism. When the HMI is initiated, it prompts users to enter the credentials

established at the outset of the solution creation process. Without successful authentication, access

to the HMI is denied. This stringent authentication layer ensures that only authorized personnel can

interact with the HMI, enhancing the security of our system.

Encrypted Visualization: Within the HMI, the values and data changes of our test application are

meticulously visualized. Importantly, this communication is encrypted, ensuring that data remains

confidential and protected from eavesdropping or tampering.

Archiving Security:

Secure Data Archiving: When archiving values into a historical database, robust encryption measures

are employed. This means that the data inputs and outputs of the function blocks within our test

application can be configured for secure archiving. This ensures that historical data remains

confidential and tamper-proof, safeguarding the integrity of our records.

Incorporating these security measures across various aspects of the IEC61499 system architecture

underscores our commitment to protecting data, ensuring authorized access, and maintaining the

confidentiality and integrity of our industrial automation solution. These security enhancements,

alongside our rigorous penetration testing efforts, are pivotal in fortifying our system against potential

vulnerabilities and threats.

8 Conclusion

In the scope of D5.4, an initial approach was examined in the domain of penetration testing, trying to

identify potential threats in two industrial communication protocols, namely OPC-UA and Modbus TCP.

Two separate simulation testbeds were deployed in order to validate the proposed approaches.

Significant findings came up, revealing the need of adopting cybersecurity mechanisms inside

industrial environments. The Modbus communication results were also submitted to an IEEE

conference [51] and accepted for presentation, proving in this stage of the project that the

cybersecurity activities in the scope of this task are novel. The intention of this task is to also try to

automate penetration testing, in order to make some processes more straightforward with the

adoption of AI algorithms. Furthermore, the development of an IEC61499 simulation platform will

allow partners to further research on the security of industrial communication protocols, such as

Modbus, OPC-UA, MQTT and IEC61499 communications in an environment, closer to a real industrial

production line. Finally, with regards to the hypothesis testing module, some initial architectural

designs have been defined, allowing the development of the module. All findings will be reported

Project funded by Horizon Europe, Grant Agreement #101057083 60

thoroughly in the next version of this deliverable, D5.9, the successor of D5.4. On the other hand, we

are in contact with Node leaders and Trial leaders in order to assess the possibility of working closely

with the project trials and have the ability to validate our modules in the trials as well, in the context

of WP6.

Project funded by Horizon Europe, Grant Agreement #101057083 61

References
[1] V. Manes, H. Han, C. Han, S. Cha, M. Egele, E. Schwartz y W. Maverick, «Fuzzing: Art, Science, and Engineering» IEEE

Transactions on Software Engineering, pp. 2312-2331, 2021.

[2] Y. Yu, Z. Chen, S. Gan y X. Wang, «SGPFuzzer: A State-Driven Smart Graybox Protocol Fuzzer for Network Protocol

Implementations» IEEE Access, vol. 8, pp. 198668-198678, 2020.

[3] O. Foundation, «Unified Architecture - OPC Foundation» 2008. [En línea]. Available:

https://opcfoundation.org/about/opc-technologies/opc-ua/. [Accessed: 17 08 2023].

[4] J. Furbush, «QUÉ ES LA OPC UA Y POR QUÉ ES FUNDAMENTAL PARA LA AUTOMATIZACIÓN INDUSTRIAL,» 22 10 2019.

[En línea]. Available: https://www.cognex.com/es-mx/blogs/machine-vision/why-opc-ua-is-essential-for-factory-

automation. [Accessed: 25 07 2023].

[5] R. A. T. U. D. a. F. Fraunhofer IOSB, «Open62541» 2023. [En línea]. Available: https://www.open62541.org/. [Accessed:

17 08 2023].

[6] O. project, «Open62541» 10 05 2023. [En línea]. Available: https://github.com/open62541/open62541. [Accessed: 17

08 2023].

[7] 2020, «A Modern Protocol: OPC UA vs MQTT», https://embeddedcomputing.com/technology/security/iec-iso-other-

standards/a-modern-protocol-opc-ua-vs-mqtt

[8] Emma McMahon, Mark Patton, Sagar Samtani, Hsinchun Chen, «Benchmarking Vulnerability Assessment Tools for

Enhanced Cyber-Physical System (CPS) Resiliency».

[9] Yuqi Chen, Bohan Xuan, Christopher M. Poskitt, Jun Sun, Fan Zhang, «Active Fuzzing for Testing and Securing Cyber-

Physical Systems», https://cposkitt.github.io/files/publications/active_fuzzing_issta20.pdf

[10] Lucas McDonald, Muhammad Ijaz Ul Haq, Ashley Barkwort, «Survey of Software Fuzzing Techniques»,

[11] Baijie Yang Shaoyun Ge Hong Liu Junkai Li, «Resilience assessment methodologies and enhancement strategies of multi‐

energy cyber‐physical systems of the distribution network».

[12] CPNI Centre for the Protection Of National Infrastructure, «CYBER SECURITY ASSESSMENTS OF INDUSTRIAL CONTROL

SYSTEMS », https://www.ccn-cert.cni.es/publico/InfraestructurasCriticaspublico/CPNI-Guia-SCI.pdf

[13] OPC foundation, Security Working Group, «Practical Security Recommendations for building OPC UA Applications»,

https://opcfoundation.org/wp-content/uploads/2017/11/OPC-UA-Security-Advise-EN.pdf

[14] Alessandro Erba, Anne Müller, Nils Ole Tippenhauer, «Security Analysis of Vendor Implementations of the OPC UA

Protocol for Industrial Control Systems», https://arxiv.org/pdf/2104.06051.pdf

[15] MIGUEL BIGUEUR, «VULNERABILITY & PATCH MANAGEMENT PROCESS»,

https://miguelbigueur.com/2016/12/24/vulnerability-patch-management-process/

[16] «What Is Fuzz Testing?», https://www.code-intelligence.com/what-is-fuzz-testing

[17] Sanaz Sheikhi, Edward Kim, Parasara Sridhar Duggirala, Stanley Bak, «Coverage-Guided Fuzz Testing for Cyber-Physical

Systems», https://stanleybak.com/papers/sheikhi2022iccps.pdf

[18] Dimitrios Serpanos, Konstantinos Katsigiannis, «Fuzzing: Cyberphysical System Testing for Security and Dependability»

[19] Maialen Eceiza, Jose Luis Flores, and Mikel Iturbe, «Fuzzing the Internet of Things: A Review on theTechniques and

Challenges for EfficientVulnerability Discovery in Embedded Systems».

[20] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, Michael Hicks, «Evaluating Fuzz Testing»,

https://cseweb.ucsd.edu/~dstefan/cse227-spring20/papers/klees:evaluating.pdf

[21] Federal Ministry for Economic Affairs and Energy (BMWi) , «Secure implementation of OPC UA for operators, integrators

and manufacturers», https://www.de.digital/DIGITAL/Redaktion/EN/Publikation/secure-implementation-of-opc-

ua.pdf?__blob=publicationFile&v=1

[22] VAISHNAVI VARADARAJAN, «Security Analysis of OPC UA in automation systems for IIoT.», https://kth.diva-

portal.org/smash/get/diva2:1653807/FULLTEXT01.pdf

[23] Dong-Hyuk Shin,1, Ga-Yeong Kim, and Ieck-Chae Euom2, «Vulnerabilities of the Open Platform Communication Unified

Architecture Protocol in Industrial Internet of Things Operation»,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460827/

[24] Federal Office for Information Security, «OPC UA Security Analysis»,

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA_2022_EN.pdf?__blob

=publicationFile&v=4

[25] Jouni Aro, Heikki Tahvanainen, «OPC UA Enables Secure Data Transfer and System Integrations in Private and Public

Networks», https://www.automaatioseura.fi/site/assets/files/1550/f2068.pdf

https://embeddedcomputing.com/technology/security/iec-iso-other-standards/a-modern-protocol-opc-ua-vs-mqtt
https://embeddedcomputing.com/technology/security/iec-iso-other-standards/a-modern-protocol-opc-ua-vs-mqtt
https://cposkitt.github.io/files/publications/active_fuzzing_issta20.pdf
https://www.ccn-cert.cni.es/publico/InfraestructurasCriticaspublico/CPNI-Guia-SCI.pdf
https://opcfoundation.org/wp-content/uploads/2017/11/OPC-UA-Security-Advise-EN.pdf
https://arxiv.org/pdf/2104.06051.pdf
https://miguelbigueur.com/2016/12/24/vulnerability-patch-management-process/
https://www.code-intelligence.com/what-is-fuzz-testing
https://stanleybak.com/papers/sheikhi2022iccps.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring20/papers/klees:evaluating.pdf
https://www.de.digital/DIGITAL/Redaktion/EN/Publikation/secure-implementation-of-opc-ua.pdf?__blob=publicationFile&v=1
https://www.de.digital/DIGITAL/Redaktion/EN/Publikation/secure-implementation-of-opc-ua.pdf?__blob=publicationFile&v=1
https://kth.diva-portal.org/smash/get/diva2:1653807/FULLTEXT01.pdf
https://kth.diva-portal.org/smash/get/diva2:1653807/FULLTEXT01.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460827/
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA_2022_EN.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA_2022_EN.pdf?__blob=publicationFile&v=4
https://www.automaatioseura.fi/site/assets/files/1550/f2068.pdf

Project funded by Horizon Europe, Grant Agreement #101057083 62

[26] «IoT Security Lab: What is OPC-UA and how does it manage security»,

https://www.cisco.com/c/en/us/td/docs/solutions/Verticals/IoT_Security_Lab/OPC-UA_WP.html

[27] Penetration Testing and Network Defense. Cisco Press, «Tiller, B. S.».

[28] Engebretson, P, «The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing Made Easy».

[29] Weidman, G, «Penetration Testing: A Hands-On Introduction to Hacking».

[30] Matteo Meucci and Andrew Muller, «OWASP Testing Guide v4», https://owasp.org/www-project-web-security-testing-

guide/assets/archive/OWASP_Testing_Guide_v4.pdf

[31] Dafydd Stuttard and Marcus Pinto, « The Web Application Hacker’s Handbook: Discovering and Exploiting Security

Flaws».

[32] Barton P. Miller, David Koski, Cjin Pheow Lee, Vivekananda Maganty, «Fuzz Revisited: A Re-Examination of the Reliability

of UNIX Utilities and Services».

[33] Patrice Godefroid, Michael Y. Levin, David Molnar, «Automated Whitebox Fuzz Testing», https://www.ndss-

symposium.org/wp-content/uploads/2017/09/Automated-Whitebox-Fuzz-Testing-paper-Patrice-Godefroid.pdf

[34] Jared D. DeMott, Richard J. Enbody, William F. Punch, «Revolutionizing the field of grey-box attack surface testing with

evolutionary fuzzing. Black Hat Briefings», https://www.blackhat.com/presentations/bh-usa-

07/DeMott_Enbody_and_Punch/Whitepaper/bh-usa-07-demott_enbody_and_punch-WP.pdf

[35] Barton P. Miller, Louis Fredriksen, Bryan So, «An empirical study of the reliability of UNIX utilities»

[36] Raviraj Mahajan, «Augmenting American Fuzzy Lop to Increase the Speed of Bug Detection»

[37] Zero-SWARM – Grant Agreement (GA), 2022, GA No: 101057083

[38] AI-enabled IoT penetration testing: state-of-the-art and research challenges, Greco Claudia, Fortino Giancarlo, Crispo

Bruno, Choo Kim-Kwang Raymond, 2022, https://doi.org/10.1080/17517575.2022.2130014

[39] Zero-SWARM - D2.2 - Eco-designed architecture, specifications & benchmarking, 2023, Grant Agreement: 101057083

[40] Zero-SWARM - D2.3 - Cybersecurity implementation templates and methodological approach, 2023, Grant Agreement:

101057083

[41] Zero-SWARM – D5.1 - Distributed automation & information management, 2023, Grant Agreement: 101057083

[42] A. Allakany, G. Yadav, K. Paul, and K. Okamura, “Detection and mitigation of lfa attack in sdn-iot network,” in Web,

Artificial Intelligence and Network Applications, L. Barolli, F. Amato, F. Moscato, T. Enokido, and M. Takizawa, Eds. Cham:

Springer International Publishing, 2020, pp. 1087–1096.

[43] F. Li, R. Xie, Z. Wang, L. Guo, J. Ye, P. Ma, and W. Song, “Online distributed iot security monitoring with multidimensional

streaming big data,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4387–4394, 2020

[44] R. Kassab, O. Simeone, and P. Popovski, “Fog-based detection for random-access IoT networks with per-measurement

preambles,” 2020.

[45] M. Walshe, G. Epiphaniou, H. Al-Khateeb, M. Hammoudeh, V. Katos, and A. Dehghantanha, “Non-interactive zero

knowledge proofs for the authentication of iot devices in reduced connectivity environments,” Ad Hoc Networks, vol.

95, p. 101988, 2019.

[46] A. Ukil, S. Bandyopadhyay, and A. Pal, “Iot-privacy: To be private or not to be private,” in 2014 IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), 2014, pp. 123–124.

[47] A. Tarighati, J. Gross, and J. Jalden, “Decentralized hypothesis testing ´ in energy harvesting wireless sensor networks,”

IEEE Transactions on Signal Processing, vol. 65, no. 18, pp. 4862–4873, 2017.

[48] M. Sun and W. P. Tay, “On the relationship between inference and data privacy in decentralized iot networks,” IEEE

Transactions on Information Forensics and Security, vol. 15, pp. 852–866, 2020.

[49] M. R. Leonard, M. Stiefel, M. Fauß, and A. M. Zoubir, “Robust sequential testing of multiple hypotheses in distributed

sensor networks,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp.

4394–4398.

[50] Huang H, Liu Y, Yuan M, Marron JS. Statistical Significance of Clustering using Soft Thresholding. J Comput Graph Stat.

2015;24(4):975-993. doi:10.1080/10618600.2014.948179

[51] IEEE Conference on Standards for Communications and Networking (IEEE CSCN 2023), 2023, Munich, Germany,

https://cscn2023.ieee-cscn.org/

[52] Selection of penetration testing methodologies: A comparison and evaluation, 2015, AUSTRALIAN INFORMATION

SECURITY MANAGEMENT CONFERENCE, https://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1181&context=ism

https://www.cisco.com/c/en/us/td/docs/solutions/Verticals/IoT_Security_Lab/OPC-UA_WP.html
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/Automated-Whitebox-Fuzz-Testing-paper-Patrice-Godefroid.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/Automated-Whitebox-Fuzz-Testing-paper-Patrice-Godefroid.pdf
https://www.blackhat.com/presentations/bh-usa-07/DeMott_Enbody_and_Punch/Whitepaper/bh-usa-07-demott_enbody_and_punch-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/DeMott_Enbody_and_Punch/Whitepaper/bh-usa-07-demott_enbody_and_punch-WP.pdf
https://doi.org/10.1080/17517575.2022.2130014
https://cscn2023.ieee-cscn.org/
https://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1181&context=ism

