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Executive Summary 
The manufacturing industry is witnessing a transformative shift towards automation, where seamless 
data gathering, processing, and learning are pivotal in driving operational efficiency.  

We aim to achieve a generic approach for distributed intelligent control applications in the cloud-to-
edge continuum, enabling: 

● the CPSoS paradigm  
● standardization of engineering and development processes,   
● run time intelligence, by real-time and near-real-time decision-making functionalities,  
● distributed intelligent agents based on AI algorithms and related data. 

The central focus is on defining an approach and an engineering platform that leverages a synergy of 
technology layers to facilitate and standardize the delivery of cloud-to-edge applications, embedding 
intelligent agents and their distributions, such for example agents based on machine learning 
algorithms for real-time decision making. 

Considering the opportunities and the challenges, in this analysis, we explore the integration of key 
technologies such as to develop a comprehensive engineering framework that bridges the gap 
between cloud-based analytics and real-time edge data, keeping into consideration the backbone 
provided by the IEC 61499.  

The convergence of these technologies enables a robust and adaptable ecosystem, enhancing data 
continuity, high performance and facilitating agile real or near-real-time decision-making and control 
processes by operators, robots, and computing resources. 

The Zero-Swarm platform encapsulates an integrated, future-proof solution for data streaming eligible 
for near and real-time decision-making tailored for modern manufacturing. Utilizing technologies such 
as Kafka, MQTT, and OPC-UA, it offers a unified architecture for data control, streaming, and 
interoperability. Key innovation elements, like Multi-Layered Adaptivity and Metamodeling and 
Federated Learning, position the platform as competitive and scalable, permitting it to respond to the 
specific solution' requirement. End-users' benefits include enhanced operational efficiency, cost 
reduction, near-real-time quality control, and risk mitigation facilitated by the distribution of intelligent 
agents. Aims beyond the state-of-the-art: 

● Seamless exchange and exposure of information across the cloud-edge continuum for AI-
based applications enabling real time decision making 

● On-the-fly data to knowledge conversion with automatic mapping to information models, e.g., 
based on OPC UA 

● Harmonized development platform enabling standardization and high development efficiency. 

The zero-warm Team is pioneering exploring the combined use of technological layers, such as (Kafka 
and MQTT) and protocols, such as OPC UA, and standards, such as IEC 61499, on a cloud-to-edge 
architecture for a tangible deployment of distributed intelligent agents, enabling real-time and near-
real-time decision making. 
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1 Introduction 
1.1 Purpose of the document 

Intelligent agents deployed within the Edge-Cloud continuum offer a strategic advantage by 
capitalizing on the strengths of both localized Edge computing and robust Cloud resources. 

The primary benefits can be summarized in: 

1. Latency Reduction and Real-Time Insights: Placing intelligent agents at the Edge enables 
rapid decision-making by reducing data transfer latency. Real-time insights derived from local 
processing enhance manufacturing processes, especially in time-sensitive scenarios like 
quality control and preventive maintenance. 

2. Bandwidth Optimization: Distributing intelligence across the Edge-Cloud continuum 
optimizes network bandwidth usage. Data preprocessing and preliminary analysis can be 
performed at the Edge, significantly reducing the amount of data transmitted to the Cloud, 
which is particularly relevant in bandwidth-constrained environments. 

3. Privacy and Security Enhancement: By processing data locally at the Edge, manufacturing 
facilities can enhance privacy and security. Critical information stays within the premises, 
minimizing exposure to external threats and compliance risks. 

4. Scalability and Resource Management: Effective distribution of intelligent agents requires 
careful consideration of resource constraints. Edge devices with limited computational 
capacity can offload resource-intensive tasks to the Cloud, ensuring efficient utilization of 
available resources. 

However, this approach also presents key challenges such as: 
1. Algorithm Selection and Deployment: Choosing the right algorithms to deploy at the Edge 

versus the Cloud requires a comprehensive understanding of processing needs, latency 
sensitivity, and resource availability. Optimizing algorithm distribution ensures optimal 
performance. 

2. Asynchronous Learning and Adaptation: Enabling asynchronous learning of predictive 
models is crucial for manufacturing applications. This involves continuous model updates in 
response to changing data streams, operational conditions, and evolving patterns. 
Adaptation mechanisms must be finely tuned to ensure accuracy and relevance. 

3. Data Synchronization and Consistency: Coordinating data synchronization and maintaining 
consistency across distributed intelligent agents can be complex. Effective management of 
data updates, versioning, and synchronization mechanisms is essential to prevent 
discrepancies and errors. 

4. Network Reliability and Robustness: The success of this approach hinges on reliable network 
connectivity. Seamless communication between Edge devices and the Cloud is vital for timely 
data exchange and decision-making. Redundancy and failover mechanisms mitigate 
disruptions caused by connectivity issues. 

The technology and the methodological approach must consider such challenges in addition to 
standardizing the development phases and reducing unnecessary complexity and related costs.  

The Cloud-to-Edge data streams and intelligent components distribution requires combining 
technologies and protocols, for example: 
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● OPC-UA is the machine-to-machine communication protocol used to exchange data between 
industrial automation systems. OPC-UA is used to collect data from sensors and machines on 
the edge. 

● A distributed streaming platform (e.g. Kafka) that is used to process and analyze data in real 
time. The streaming platform acts as a message broker between the edge devices and the 
cloud platform. 

● The Edge Platform is responsible for processing and analyzing the data collected from edge 
devices using OPC-UA. This platform can be deployed on the edge, allowing for real-time 
processing and analysis of data. The edge platform can also act as a gateway between the edge 
devices and the cloud platform. 

● The Cloud Platform is responsible for storing and analyzing data received from edge devices 
(for example, through Kafka). This platform can be used to provide insights into the data 
collected from edge devices and can also be used to trigger actions based on the data received. 

This document provides an incisive overview of state-of-the-art, related to the distributed stream 
computing for continuous gathering and learning of data in Cloud-to-Edge architecture.  
From the such overview, which includes the available technologies and the current limitations, the 
document provides a deeper understanding about how to use IEC 61499 over OPC-UA, Kafka and 
MTQQ. 

The concepts reported in the document are needed to define the most suitable technology layers 
constituting the zero-Swarm Platform and zero-Swarm Applications. 

1.2 Structure of the document 

The document is structured as follows:  

• Chapter 1 introduction to the document and the context. 

• Chapter 2 analysis of the state of the art. 

• Chapter 3 the zero-Swarm Innovation and cloud-to-edge conceptual architecture. 

• Chapter 4 beyond the state of the Art. Insight about IEC 61499 using OPC-UA over Kafka & 
MQTT. 

• Chapter 5 Conclusion. 

• Chapter 6 References. 

2 Distributed Streaming Computing in the Cloud-to-Edge 
continuum - State of the Art & Current limits  

2.1 Edge-nodes and Cyber Physical Systems of Systems: a brief background 
knowledge for the scope of zero-Swarm 

In cloud edge architecture [1], the edge encompasses the network infrastructure and computing 
resources situated closer to the end-user or data source, as opposed to centralized resources in a 
remote data center or the cloud. The purpose of the edge is to bring computing capabilities and data 
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storage closer to the network's edge, resulting in reduced latency, enhanced response times, and real-
time data processing capabilities [2][3]. 

Traditional cloud computing [4] involves transmitting data from edge devices, such as sensors, IoT 
devices, routers, gateways, edge servers, and smartphones, to remote data centers or the cloud for 
processing and analysis. However, edge computing [5] allows for some processing, storage, and 
analysis tasks to be conducted at or near the edge devices themselves. Within the scope of the zero-
Swarm, an edge node can be considered any physical device with on-board capabilities for data 
processing and transmission, such as a robot with on-board capabilities.  So, for example, any robot 
with on-board capabilities is an edge node. 

Figure 1 illustrating the components of an edge node might include the following elements [6]: 
● Application Processor, which executes application logics, is responsible for managing and 

coordinating the various components of the edge node. 
● Sensors collect data from the surrounding environment or from end-user devices. 
● AI Application incorporates machine learning models, artificial intelligence algorithms, or 

advanced analytics capabilities to make intelligent decisions locally. 
● Network Hardware facilitates communication with other edge nodes, cloud resources, or 

end-user devices, supporting wired or wireless connectivity options such as Ethernet, Wi-Fi, 
or cellular networks. 

● Edge-DB provides local storage capacity for storing and caching relevant data, allowing for 
faster access and reducing the need for constant communication with the cloud. 

 

 
Figure 1: Edge-Node components view 

Edge nodes are integral to the cloud-to-edge paradigm [7], as they facilitate distributed computing and 
bring computational capabilities closer to data sources or end-user devices. Key characteristics of an 
edge node include proximity to data sources, bandwidth optimization, computing power, improved 
reliability, storage capacity, connectivity, real-time processing, low latency, intelligent decision-
making, and security and privacy. Specifically, [8], edge nodes are an essential component of edge 
computing as they are positioned in close proximity to the data source or end-user devices. They 
collect, process, and analyze data in real-time, reducing latency and network congestion. Edge 
computing optimizes bandwidth usage by performing initial data processing locally and transmitting 
only relevant or summarized data to the central location. Edge nodes have sufficient computing power 
to perform local data processing and analysis tasks and often have specialized accelerators to handle 
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computational workloads efficiently. They enhance reliability by minimizing reliance on a single remote 
data centre, and if the connection to the cloud is lost, edge devices can still function and process data 
locally. Edge nodes typically have local storage capacity to store and cache relevant data, allowing for 
faster access and reducing the need for constant communication with the cloud. Edge nodes support 
wired or wireless connectivity options, such as Ethernet, Wi-Fi, or cellular networks, depending on the 
deployment scenario. They are capable of performing real-time data processing and analysis, making 
them suitable for time-sensitive applications, and can quickly respond to local events, trigger actions, 
or provide immediate feedback to end-users. Edge nodes may incorporate machine learning models 
[9], artificial intelligence algorithms, or advanced analytics capabilities to make intelligent decisions 
locally, allowing for efficient use of cloud resources and enabling edge computing applications like 
predictive maintenance, anomaly detection, or real-time optimization. They enforce robust security 
measures to protect sensitive data and ensure data privacy, including encryption, access control, 
secure bootstrapping, and regular security updates to mitigate vulnerabilities.  

Furthermore, they should be designed to scale horizontally or vertically based on the requirements of 
the edge computing environment [10]. They should support flexible configurations to accommodate 
varying workloads and changing demands. In other words, edge computing infrastructure should be 
able to add or remove edge nodes as needed to handle increased or decreased workloads. In the end, 
edge nodes should have management and orchestration capabilities to facilitate efficient deployment, 
configuration, monitoring, and software updates. Centralized management systems can help in 
administering a large number of distributed edge nodes effectively. 

Edge nodes can be organized in a hierarchical structure, with multiple layers serving specific purposes 
or processing levels. This allows for the distribution of computing resources and responsibilities across 
different levels of the edge infrastructure. Programmable Logic Controllers (PLCs) are typically not 
considered edge nodes [11], as they primarily focus on real-time control and executing pre-
programmed logic to manage industrial processes. However, advanced PLCs or PLC-based systems with 
additional computational capabilities and connectivity options, integrated with edge computing 
principles, may be considered edge nodes in certain contexts. 

A local computing server responsible for processing and transferring data close to the field can also be 
considered an edge node within the context of the generalization concept useful for the zero-Swarm. 

Whereas, a cyber physical system of systems [12] refers to a collection of individual systems or 
components working together to achieve a common goal or provide unified functionality. Each system 
within the cyber physical system of systems contributes to the overall system's capabilities and can be 
organized hierarchically. In this context, any edge node can be considered a system-node within the 
entire system. In a cyber system of systems [13], edge nodes can act as system-nodes and contribute 
to the overall system's capabilities. They can be organized hierarchically, with each edge node 
responsible for a specific subset of the system's functionality. For example, a network of edge nodes 
could be responsible for monitoring and controlling a manufacturing plant's various processes, with 
each edge node responsible for a specific subset of machines or equipment. edge nodes can enhance 
the reliability and security of a cyber system of systems. By minimizing reliance on a single remote data 
centre, edge nodes can provide redundancy and fault tolerance, ensuring that the system operates 
continuously even if one or more edge nodes fail. Edge nodes can also enforce robust security 
measures to protect sensitive data and ensure data privacy, such as encryption, access control, secure 
bootstrapping, and regular security updates to mitigate vulnerabilities. 
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2.2 Cloud-to-Edge technologies: a review of the main platforms 

Cloud to Edge development technologies [14][15] refer to a set of tools, platforms, and frameworks 
that enable developers to create applications and services that leverage the strengths of cloud 
computing and edge computing environments. Cloud computing [16] centralizes computational 
resources and data in remote data centers, while edge computing processes data closer to the source, 
typically at the network's edge or near end devices as shown in Figure 2. These technologies allow for 
seamless integration and interaction between the two environments, enabling the creation of 
distributed and intelligent applications that capitalize on the strengths of both cloud and edge 
computing. These technologies enable seamless integration and interaction between the two 
environments, allowing developers to create distributed and intelligent applications that capitalize on 
the strengths of both cloud and edge computing. When combined with 5G technology [17], this 
concept opens up opportunities for manufacturing applications and systems involving intensive 
automation, robotics, and drones. 

 
Figure 2: Cloud to edge conceptual architecture 

As reported in other deliverables of the Zero Swarm project, numerous technologies contribute to a 
Cloud to Edge architecture. Cloud platforms such as AWS, Azure, and GCP offer a broad array of tools 
for developing and deploying applications in the cloud. These platforms provide capabilities like 
computing, storage, databases, analytics, and machine learning, which can be used to construct cloud-
based components of Cloud to Edge applications. Edge platforms such as AWS Greengrass, Azure IoT 
Edge, and Google Edge TPU offer software frameworks and tools for deploying and managing 
applications at the network's edge. These platforms enable developers to execute code and process 
data on edge devices, such as edge servers, gateways, and IoT devices, supporting edge computing 
capabilities. 

Containerization technologies like Docker and orchestration platforms like Kubernetes are widely 
employed in Cloud to Edge development. Containers allow for packaging applications and their 
dependencies into portable units, enabling consistent deployment across cloud and edge 
environments. Kubernetes offers a robust and scalable framework for managing containerized 
applications across cloud and edge clusters, simplifying application deployment and management in a 
distributed setting. 
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Edge computing frameworks such as Apache Edgent, Eclipse ioFog, and TensorFlow Lite for Edge 
provide programming frameworks and libraries specifically tailored for edge computing. These 
frameworks provide tools and APIs for developing edge applications capable of processing data locally 
on edge devices, facilitating real-time and low-latency processing capabilities. Machine learning 
models can be implemented at the edge to enable intelligent data processing closer to the source. 
Technologies like TensorFlow Lite, ONNX Runtime, and NVIDIA TensorRT offer libraries and tools for 
deploying machine learning models on edge devices, allowing for real-time inference and decision-
making capabilities. 

Connectivity plays a vital role in Cloud to Edge development. Technologies such as 5G, MQTT, and edge 
gateways ensure reliable and low-latency communication between cloud and edge environments. 
These technologies facilitate efficient and seamless data exchange, control, and coordination between 
cloud and edge components of a distributed application. 

Robust security and privacy measures are essential for Cloud to Edge development. Technologies like 
Secure Enclaves, Trusted Execution Environments (TEEs), and Secure Boot guarantee the security and 
protection of edge devices and applications from threats. Additionally, data encryption, access 
controls, and authentication mechanisms are implemented to safeguard data and maintain privacy in 
distributed cloud-to-edge environments. 

A brief review of the main platforms follows. AWS Greengrass [18] is an edge computing platform 
provided by Amazon Web Services (AWS). It allows developers to deploy Lambda functions, Docker 
containers, and machine learning models on edge devices. Greengrass also provides local messaging, 
caching, and data synchronization capabilities, allowing for offline operation and reduced latency. It 
integrates with other AWS services, enabling seamless communication and coordination between 
edge and cloud components. Greengrass also offers features such as automatic device management, 
security, and monitoring, making it easier to deploy and manage applications at the edge. 

Azure IoT Edge [19] is an edge computing platform provided by Microsoft Azure. It allows developers 
to deploy containerized modules, including Docker containers and Azure Functions, on edge devices. 
Azure IoT Edge also provides features such as local data processing, device management, and security. 
It integrates with other Azure services, allowing for seamless communication and data processing 
between edge and cloud components. Azure IoT Edge also supports machine learning capabilities with 
Azure Machine Learning, enabling deployment of machine learning models at the edge for real-time 
inferencing. 

Google Edge TPU [20] is a hardware accelerator designed specifically for edge computing. It provides 
high-performance, low-power processing capabilities for machine learning inferencing at the edge. The 
Edge TPU integrates with TensorFlow, a popular machine learning framework, enabling developers to 
deploy machine learning models at the edge for local inferencing. The Edge TPU is optimized for edge 
devices, such as IoT devices and edge servers, and provides hardware acceleration for efficient and 
fast inferencing capabilities. 

Apache Edgent [21] is an open-source edge computing framework that provides a programming model 
and runtime for edge devices. It supports a wide range of devices and platforms, including Raspberry 
Pi, BeagleBone Black, and Android. It provides local compute, messaging, and data management 
capabilities, and can be integrated with other Apache projects, such as Kafka and Spark.  Edgent offers 
a lightweight and modular framework that supports running analytics and processing data at the edge 
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of the network, closer to the data source. 

Edgent provides connectors to various data sources, such as sensors, devices, and gateways, and 
supports a wide range of programming languages, including Java, Python, and JavaScript. 

Edgent focuses on enabling low-latency and real-time data processing at the edge, with features such 
as data aggregation, filtering, and transformation. 

Edgent also supports extensibility through its modular architecture, allowing developers to add custom 
analytics modules and integrate with other edge technologies. 

EdgeX Foundry [22] is an open-source edge computing framework that provides a modular platform 
for building and deploying edge computing applications. It supports a wide range of devices and 
platforms, including Linux, Windows, and ARM-based devices. It provides local compute, messaging, 
and data management capabilities, and can be integrated with other open-source projects, such as 
Docker and Kubernetes. 

Eclipse ioFog [23] is an open-source edge computing framework that provides a platform for 
developing, deploying, and managing edge applications and services.  

ioFog offers a distributed architecture with a hierarchical approach, enabling the deployment and 
coordination of microservices across a network of edge devices and gateways. 

ioFog provides features such as local data processing, message routing, and fog computing capabilities, 
allowing for processing data and running microservices at the edge. 

ioFog also includes management capabilities for deploying, scaling, and monitoring edge applications, 
with a focus on providing a secure and scalable edge computing platform. 

With a specific focus on Machine learning, the following platforms are the most commonly used. 
TensorFlow Lite for Edge [24] is a machine learning framework provided by Google that enables 
running machine learning models on edge devices.  TensorFlow Lite for Edge is designed specifically 
for edge computing, with optimizations for running machine learning inference on resource-
constrained devices, such as IoT devices and edge servers. 

TensorFlow Lite for Edge provides a wide range of pre-trained models for tasks such as image 
recognition, object detection, and speech recognition, as well as tools for converting and deploying 
custom machine learning models. 

TensorFlow Lite for Edge also offers support for hardware acceleration, allowing for efficient and fast 
inferencing on edge devices with dedicated hardware, such as GPUs and TPUs. 

TensorFlow Lite offers features such as model quantization, which reduces the size of the models while 
maintaining inference accuracy, and hardware acceleration, which allows for efficient inferencing on 
edge devices with dedicated hardware, such as GPUs and TPUs. 

ONNX Runtime [25] is an open-source runtime that is part of the Open Neural Network Exchange 
(ONNX) project, which aims to provide interoperability between different machine learning 
frameworks. ONNX Runtime supports running machine learning models on edge devices, as well as in 
the cloud, and provides optimizations for edge deployment, such as model quantization and hardware 
acceleration. ONNX Runtime is designed to be extensible and supports a wide range of machine 
learning frameworks, including TensorFlow, PyTorch, and scikit-learn, allowing for seamless 
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integration of models from different frameworks. ONNX Runtime also provides support for deploying 
machine learning models in different programming languages, such as C++, Python, and Java, making 
it versatile for edge deployment in various environments. 

NVIDIA TensorRT [26] is an inference optimization runtime provided by NVIDIA that is designed to 
accelerate deep learning inferencing on NVIDIA GPUs. TensorRT provides optimizations such as layer 
fusion, precision calibration, and dynamic tensor memory management, which enable efficient and 
fast inferencing of deep learning models on edge devices with NVIDIA GPUs. TensorRT supports 
popular deep learning frameworks, including TensorFlow, PyTorch, and ONNX, and provides a 
TensorRT Python API for seamless integration with these frameworks. 

TensorRT also includes support for INT8 and FP16 precision inference, which can further optimize the 
performance of machine learning models on edge devices with NVIDIA GPUs. 

Performance and feature comparison of these Machine Learning at the Edge technologies depends on 
various factors, such as the specific use case, hardware resources available on the edge devices (e.g., 
GPU or CPU), and the type of machine learning models being deployed. Each technology has its own 
strengths and trade-offs. For example, TensorFlow Lite is focused on efficient inferencing on resource-
constrained devices with a wide range of pre-trained models, ONNX Runtime provides interoperability 
with different machine learning frameworks and support for multiple programming languages, and 
NVIDIA TensorRT is optimized for inferencing on NVIDIA GPUs. It's important to evaluate the 
performance, features, and compatibility of these technologies based on the specific needs of your 
edge computing application. 

Performance comparison of edge platforms depends on various factors, such as the specific use case, 
workload, and hardware resources available on the edge devices. Each platform has its own strengths 
and trade-offs. For example, AWS Greengrass provides a wide range of features and integrations with 
other AWS services, making it a comprehensive and scalable choice for edge computing. Azure IoT 
Edge offers strong integration with the Microsoft Azure ecosystem and provides capabilities for 
deploying and managing containerized modules. Google Edge TPU is focused on machine learning 
inferencing with dedicated hardware acceleration, making it a suitable choice for AI-driven edge 
applications.  

Performance benchmarks and comparisons are typically workload-dependent and may vary based on 
specific requirements and configurations. It's important to evaluate the performance and suitability of 
edge platforms based on the specific needs. Considering the goal of zero-Swarm it should be given 
priority to features that enable intensive use of data streams and AI applications. 

In summary, Cloud to Edge development technologies comprise a diverse range of tools, frameworks, 
and platforms that enable the creation of distributed applications spanning cloud and edge 
environments. These technologies supply the necessary tools and capabilities to build intelligent, real-
time, and scalable applications that harness the strengths of both cloud and edge computing. The 
zeroSwarm project is designed to test a multi-layered infrastructure that combines the most suitable 
platforms, enabling the management of Cyber-Physical Systems of Systems (CSoS) through the EIC 6-
1499 extension. 

2.3 Cloud-Edge architectures: pros and cons 
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As reported in previous sections, Cloud-to-Edge architecture refers to a distributed computing model 
where data processing and computation are performed both in centralized cloud data centers and at 
the edge, which includes devices or nodes at the network's periphery. While this approach offers 
several advantages such as reduced latency, bandwidth optimization, and enhanced privacy and 
security, it also comes with its own set of challenges that must be addressed when designing and 
implementing solutions, Figure 3. The main advantages and typical problems of these architectures 
are then reported [27]. 

 
Figure 3: Cloud to edge main characteristics 

Edge devices are geographically closer to the data source, which can significantly reduce the latency in 
processing time-sensitive data. For applications that require real-time or near-real-time responses, 
such as industrial automation, autonomous vehicles, or augmented reality, Cloud-to-Edge architecture 
can provide substantial performance benefits by minimizing data transfer delays and improving overall 
system responsiveness. Cloud-to-Edge architecture can help optimize network bandwidth by 
processing data at the edge before transmitting it to the cloud. This reduces the amount of data that 
needs to be transmitted to the cloud, thereby reducing the bandwidth requirements and associated 
costs. This can be especially beneficial in scenarios where bandwidth is limited or expensive, such as 
in remote or rural areas. Edge devices can process sensitive data locally without transmitting it to the 
cloud, which can help address privacy and security concerns. By keeping data locally on edge devices, 
Cloud-to-Edge architecture can mitigate risks associated with data breaches, unauthorized access, and 
compliance issues, as data is not transmitted over the network or stored in a centralized cloud. 

However, there are also crucial issues that can impact the performance of Cloud-to-Edge architecture 
and must be considered when designing a zero-Swarm solution. 

Edge devices typically have limited computational resources compared to the cloud, which can impact 
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the scalability of the system. Complex or resource-intensive applications may face limitations in terms 
of processing capabilities, memory, and storage at the edge. This can require careful distribution of 
tasks and workload management to ensure efficient utilization of resources. Deciding which algorithms 
should be deployed at the edge and which should be executed in the cloud can be challenging. Some 
algorithms may require significant computational resources and may be better suited for cloud 
execution, while others may need low-latency processing and are more suitable for edge execution. 
Efficiently managing the distribution of algorithms across the cloud and edge, and dynamically 
adapting the distribution based on changing conditions, can impact the overall system performance. 
In Cloud-to-Edge architecture, data may be processed and stored at different locations, leading to 
challenges in data synchronization and consistency. Ensuring that data remains consistent across cloud 
and edge, and managing data updates, caching, and versioning, can be complex and impact system 
performance. Cloud-to-Edge architecture relies heavily on network connectivity between the cloud 
and edge devices. Unreliable or intermittent network connections can disrupt data processing, result 
in delays, and impact system performance. Ensuring reliable and robust network connectivity, 
especially in remote or harsh environments, is crucial for the success of Cloud-to-Edge architecture. 

2.4 An introduction to OPC-UA 

OPC-UA (Open Platform Communications Unified Architecture) is a widely adopted industrial 
communication protocol that provides a standardized and interoperable way to exchange data 
between industrial devices, sensors, machines, and systems [28]. OPC-UA plays a significant role in the 
integration of industrial systems with edge computing and cloud computing environments, enabling 
efficient and secure data communication across the Cloud-to-Edge architecture, as described in Figure 
4. 

 
Figure 4: An example of OPC-UA architecture 

OPC-UA [29] is designed to be platform-independent, vendor-neutral, and open, making it widely 
adopted across various industries such as manufacturing, energy, transportation, and building 
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automation. OPC-UA supports a range of programming languages and operating systems, allowing for 
flexible and adaptable implementation in different environments. 

One of the primary roles of OPC-UA in the Cloud-to-Edge architecture is data acquisition. OPC-UA 
servers can be deployed on edge devices or gateways, enabling them to communicate with various 
industrial protocols and collect data from sensors, machines, and other devices. This data can then be 
processed, analyzed, and acted upon locally at the edge or transmitted to the cloud for further 
processing. 

OPC-UA provides a standardized way to represent data from different industrial systems, regardless of 
the underlying protocols or data formats. OPC-UA defines a unified data model, which includes a 
hierarchical address space and a set of standardized data types, allowing for seamless data integration 
and interoperability across different devices and systems. This enables a consistent representation of 
data across the Cloud-to-Edge architecture, simplifying data processing and analysis. 

OPC-UA includes robust security features to ensure the secure transmission and storage of data in the 
Cloud-to-Edge architecture. OPC-UA supports a variety of security mechanisms, including Transport 
Layer Security (TLS), Secure Sockets Layer (SSL), and authentication via certificates or 
username/password. This helps protect sensitive industrial data and ensures the integrity and 
confidentiality of data exchanged between edge devices, gateways, and the cloud. 

OPC-UA supports a flexible and scalable Publish/Subscribe (Pub/Sub) model, where data can be 
published by OPC-UA servers and subscribed to by OPC-UA clients. This allows for efficient and 
asynchronous data communication between edge devices, gateways, and cloud systems, reducing the 
overhead of continuous polling and enabling real-time or near-real-time data processing and analysis. 

Finally, OPC-UA provides interoperability between different vendors, devices, and systems, making it 
easier to integrate and exchange data across the Cloud-to-Edge architecture. OPC-UA defines a 
common set of communication services and data modeling conventions, enabling seamless integration 
of different industrial systems regardless of the underlying technologies or protocols. 

Overall, OPC-UA [30][31] serves as a key enabling technology in the Cloud-to-Edge architecture, 
providing a standardized, secure, and efficient way to exchange data between industrial systems and 
cloud computing environments. 

2.5 The role of Gate-way & Protocols such as MQTT  

MQTT (Message Queuing Telemetry Transport) [32] is a standardized messaging protocol, or set of 
rules, used for machine-to-machine communication. It is commonly used by smart sensors, wearable 
devices, and other Internet of Things (IoT) devices that need to transmit and receive data over 
networks with limited resources and bandwidth. These IoT devices utilize MQTT for data transmission 
because it is easy to implement and efficiently communicates IoT data. MQTT supports messaging 
between devices and the cloud, as well as between the cloud and devices. 

The MQTT protocol has become a standard for IoT data transmission and offers several benefits as 
described in Table 1. 

Benefit Description 

Lightweight and Implementing MQTT on IoT devices requires minimal resources, making it 
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Efficiency suitable for even small microcontrollers. For example, a minimal MQTT control 
message can consist of just two bytes of data. Additionally, MQTT message 
headers are small in size, optimizing network bandwidth. 

Scalability MQTT implementation requires minimal code and consumes very little power 
during operations. The protocol also provides built-in functions to support 
communication with a large number of IoT devices. This enables the 
implementation of MQTT to connect with millions of these devices. 

Reliability Many IoT devices connect over unreliable cellular networks with limited 
bandwidth and high latency. MQTT incorporates built-in features that reduce 
the time for IoT devices to reconnect to the cloud.  

Security MQTT simplifies message encryption and device/user authentication for 
developers using modern authentication protocols such as OAuth, TLS1.3, 
Client Managed Certificates, and more. 

Good Support Several programming languages, such as Python, provide extensive support for 
MQTT implementation. Hence, developers can quickly implement MQTT with 
minimal coding in any application. 

Table 1: MQTT benefits 

The MQTT protocol was invented in 1999 for use in the oil and gas industry. Engineers needed a 
protocol that offered minimal bandwidth usage and minimal battery drain to monitor pipelines via 
satellite. Initially, the protocol was known as Message Queuing Telemetry Transport due to the IBM 
MQ series products it supported in its early stages. In 2010, IBM released MQTT 3.1 as an open and 
free protocol for anyone to use, which was later submitted to the Organization for the Advancement 
of Structured Information Standards (OASIS) for maintenance in 2013. In 2019, OASIS released the 
updated MQTT version 5. MQTT is now no longer an acronym but is considered the official name of 
the protocol. 

The MQTT protocol operates based on the principles of the publish-subscribe model. In traditional 
network communication, clients and servers communicate directly with each other. Clients request 
resources or data from the server, which processes the requests and sends responses. However, MQTT 
uses a publish-subscribe scheme to decouple the message sender (publisher) from the message 
receiver (subscriber). Instead, a third component called the message broker manages the 
communication between publishers and subscribers. The broker's task is to filter all incoming messages 
from publishers and distribute them correctly to subscribers. 

Before we delve deeper into MQTT, it is crucial to understand the publish-subscribe pattern, also 
known as the pub-sub pattern. This pattern enables decoupling between the client that publishes a 
message and the client or clients that receive the message. Clients are oblivious to the existence of 
other clients, and a publisher can send messages of a specific type, which are then received only by 
the clients interested in those types of messages. This pattern relies on a broker, also referred to as a 
server, which acts as an intermediary. All clients establish connections with the broker, and the client 
responsible for sending a message through the broker is called the publisher. The broker filters 
incoming messages and distributes them to the clients subscribed to the relevant message types. 
Clients that register themselves as subscribers establish connections with the broker accordingly. To 
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visualize this concept, let's consider the following scenario: 

An Autonomous Mobile Robot (AMR) equipped with a battery sensor is configured to communicate 
with other devices. 

In this scenario, an AMR acts as the publisher and sends a message with a payload of relevant sensor 
data to the broker. It is important to note that the payload refers to the data encapsulated within a 
message, including its associated topic. Subsequently, the broker distributes the message to the two 
clients that have subscribed to the "AMR" topic: Subscriber 1, representing which can be another AMR, 
and Subscriber 2, representing a Monitoring System. As shown in Figure 5: MQTT Publish-Subscriber. 

Figure 5: MQTT Publish-Subscriber 

The publish-subscribe pattern ensures that publishers and subscribers are decoupled, meaning they 
are unaware of each other's existence. Furthermore, publishers and subscribers do not need to 
operate simultaneously. Publishers can send messages while subscribers receive them at a later time. 
Additionally, the publish operation is asynchronous and not synchronized with the receive operation. 
Publishers request the broker to publish a message, and different clients subscribed to the 
corresponding topics may receive the message at different times. Publishers have the option to send 
messages asynchronously, avoiding being blocked until clients receive them. Alternatively, they can 
choose to send messages synchronously, waiting for a successful operation from the broker before 
proceeding with further execution. 

MQTT plays a crucial role in defining our architecture, allowing us to manage AMRs. MQTT, enables 
efficient communication and coordination between the various components. In this context, an AMR 
can be seen as an edge device that subscribes to the system. 

MQTT provides a lightweight and scalable communication framework that facilitates real-time data 
exchange between AMRs, the management system, and other devices. It enables seamless integration 
and coordination within the system. In this way we obtain a decoupled and flexible communication 
pattern. AMRs act as publishers, sending updates on their status, tasks, or requests, while the 
management system and other components act as subscribers, receiving relevant information. 

It is essential to set up an MQTT broker, establish the necessary network infrastructure, and integrate 
MQTT functionality into the AMRs' software or firmware. By leveraging MQTT's capabilities, we can 
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efficiently manage and coordinate the fleet of AMRs, enabling real-time data exchange, task 
assignments, and remote monitoring. 

Edge gateways play a crucial role in enabling hybrid connectivity by providing the interface between 
edge devices and various connectivity technologies, such as 5G, MQTT, and other protocols, ensuring 
seamless communication and data processing between edge and cloud environments 
Edge gateways can be deployed in different forms, such as dedicated hardware devices or virtualized 
software instances, depending on the specific use case and requirements. 

2.6 Kafka introduction and comparison with common alternatives 

Apache Kafka is a powerful open-source event streaming platform widely used for building scalable, 
real-time data pipelines. It has gained significant popularity in recent years and has become a 
cornerstone of modern data infrastructure. Kafka provides a distributed, fault-tolerant system that 
enables high-throughput, low-latency data streaming, making it an ideal choice for applications that 
require real-time data processing and analysis. At the core of Kafka's architecture is the pub-sub model 
[36]. Producers publish messages to topics, and consumers subscribe to those topics to receive the 
messages in real time. This decoupling of producers and consumers allows for high scalability and 
flexibility in data distribution. Kafka ensures durability by persisting messages to disk, providing fault 
tolerance and enabling data recovery even in the event of failures. Kafka's robustness, scalability, and 
versatility have made it the go-to choose for many organizations dealing with high volumes of 
streaming data. It has found applications in various industries, including finance, e-commerce, social 
media, and more. Its ability to handle large-scale data ingestion and processing has made it a 
fundamental component of data-driven architectures.  

Figure 6 shows the Kafka model. It consists of a producer that write data to topics, consumers that 
read data from topics, and a broker that handle storage and replication of data. Kafka enables high-
throughput, fault-tolerant, and scalable data processing in real-time that can be available to the 
consumer. 

 
Figure 6: Kafka Conceptual Architecture 

Kafka's ability to collect data from various edge devices, sensors, and monitoring systems is a 
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fundamental functionality that greatly enhances edge system monitoring. With Kafka, these devices 
can publish data directly to Kafka topics using Kafka producers. This direct publication mechanism 
eliminates the need for complex data integration processes and allows for efficient and centralized 
data collection [35][36][37]. The data collected can include system metrics, sensor readings, log files, 
or any other relevant information from the edge environment. By leveraging Kafka for data collection, 
organizations can overcome the challenges associated with heterogeneity in edge systems. Edge 
devices and sensors often use different protocols, formats, or data structures, making data integration 
a complex task. However, Kafka's flexibility in handling various data formats and protocols simplifies 
this process. It acts as a unified data bus that can receive and store data from disparate sources, 
enabling seamless integration and ensuring that no data is lost. 

Furthermore, real-time streaming is a crucial functionality provided by Kafka that enables edge system 
monitoring to keep pace with the dynamic nature of edge environments. Kafka's distributed streaming 
capabilities allow data to be streamed in real-time from edge devices to centralized monitoring 
systems. This real-time streaming capability ensures that the monitoring system has immediate 
visibility into the state of the edge systems, allowing for timely response to critical events or anomalies 
[38]. The consumption of data through Kafka consumers further enhances real-time monitoring 
capabilities. Kafka consumers can perform real-time analysis, aggregation, or filtering on the streaming 
data, enabling organizations to gain valuable insights and detect patterns or anomalies in real-time. 
For example, by applying stream processing algorithms within the Kafka ecosystem, organizations can 
identify potential equipment failures, trigger proactive maintenance actions, or detect anomalies that 
may indicate security breaches. 

In edge system monitoring, where intermittent network connectivity or device failures are common, 
ensuring the reliability of data capture and processing is essential. Kafka's fault-tolerant design 
addresses these challenges effectively. Kafka allows for data replication and distribution across 
multiple Kafka brokers, ensuring that even if a broker or a network connection fails, the data is still 
available for processing and consumption. The replication of data across Kafka brokers provides 
resiliency to edge system monitoring applications. Each Kafka broker can act as a leader or a follower 
for different partitions of a Kafka topic [39]. If a leader broker fails, one of the follower brokers 
automatically takes over, ensuring continuous data availability. This fault-tolerant design mitigates the 
risk of data loss and ensures that monitoring systems can rely on the data collected from edge devices, 
even in challenging and dynamic edge environments. 

Scalability is also a critical aspect of edge system monitoring, as the number of edge devices and the 
volume of data generated can increase rapidly. Kafka's distributed nature makes it highly scalable, 
allowing it to handle high volumes of data from numerous edge devices. As the number of devices or 
data sources increases, additional Kafka brokers can be added to the cluster to handle the increased 
load effectively [40]. The ability to add more Kafka brokers to the cluster without impacting the overall 
system performance ensures that edge system monitoring can scale seamlessly as the deployment 
grows. This scalability is particularly valuable in scenarios where the number of edge devices may vary 
dynamically, such as in industrial IoT deployments or smart city environments. Kafka's scalability 
enables organizations to accommodate the evolving needs of edge system monitoring without 
compromising performance or data integrity. 

Kafka's role as a data ingestion layer enables seamless integration between edge systems and cloud-
based monitoring and analytics platforms. In edge-to-cloud integration, edge devices publish data to 
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Kafka, which then acts as a bridge, forwarding the data to cloud services for further analysis, long-term 
storage, or visualization. This integration brings several advantages to edge system monitoring [41]. 
First, it allows organizations to leverage the power of cloud-based analytics and machine learning 
algorithms to gain deeper insights from the data collected at the edge. Cloud platforms can provide 
advanced analytics capabilities, such as predictive maintenance, anomaly detection, or optimization 
algorithms, which can be applied to the data ingested through Kafka. Second, edge-to-cloud 
integration enables long-term storage of data in scalable and durable cloud storage systems. While 
edge devices often have limited storage capacities, cloud storage can accommodate large volumes of 
historical data, allowing for comprehensive analysis and retrospective investigations. This is 
particularly valuable for compliance, auditing, or performance optimization purposes. Third, cloud-
based visualization and reporting tools can leverage the data ingested through Kafka to provide rich 
dashboards, real-time monitoring interfaces, or automated reporting. This enhances situational 
awareness and decision-making capabilities, enabling stakeholders to have a holistic view of the edge 
system's performance, health, and operational metrics. 

Kafka's integration with stream processing frameworks, such as Apache Kafka Streams or Apache Flink, 
opens up opportunities for performing on-the-edge data processing and analytics. This capability 
empowers edge devices to perform real-time data transformations, aggregations, or anomaly 
detection directly within the Kafka ecosystem before sending processed data to centralized systems 
[42]. By leveraging Kafka's integration with stream processing frameworks, organizations can address 
latency, bandwidth, or privacy constraints associated with transmitting large volumes of data to 
centralized processing infrastructures. Edge devices can apply custom business logic or predefined 
algorithms to the streaming data, enabling real-time decision-making and immediate action at the 
edge. For example, an edge device can analyze sensor data to detect abnormal patterns, trigger local 
alarms, or adjust its own behavior autonomously, without relying on centralized systems. The on-the-
edge data processing capability provided by Kafka fosters distributed intelligence and decision-making, 
reducing dependency on centralized resources and network connectivity. It enables organizations to 
utilize the computational power available at the edge efficiently and empowers edge devices to 
respond rapidly to local events or changing conditions. 

While Kafka remains a popular choice, several alternatives have emerged in recent years, offering 
similar or enhanced functionalities. 

2.7 Comparison with common alternatives 

Apache Kafka has established itself as a leading event streaming platform, but in recent years, several 
alternatives have emerged in the market. This section will provide a detailed comparison of Kafka with 
some of the common alternatives, namely Apache Pulsar, Redpanda, StreamSets, and Estuary Flow. 

Apache Pulsar is an open-source event streaming platform that shares similar functionality with Kafka. 
Like Kafka, Pulsar offers strong durability and scalability, making it suitable for handling large volumes 
of data. One key advantage of Pulsar is its support for multi-layered topics, which provides greater 
flexibility and simplifies data organization. By dividing topics into multiple layers, Pulsar allows for 
more granular control over data routing and enables efficient data processing workflows [43]. 
Additionally, Pulsar provides native support for both streaming and batch processing, which expands 
its use case possibilities compared to Kafka. This versatility makes Pulsar suitable for scenarios that 
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require both real-time processing and offline analytics. Furthermore, Pulsar offers multi-tenancy 
support, allowing different users or organizations to share a single Pulsar cluster while maintaining 
data isolation. This feature is particularly useful in multi-tenant environments where data privacy and 
resource allocation are crucial considerations. 

Redpanda is a streaming platform built as a Kafka-compatible alternative. It aims to address some of 
the limitations and complexities associated with Kafka while maintaining compatibility with Kafka's 
APIs and ecosystem. Redpanda offers improved performance, lower latency, and simpler 
administration, making it an attractive option for organizations with demanding real-time applications. 
One of the key advantages of Redpanda is its ability to leverage modern hardware features and 
techniques to deliver enhanced performance. It takes advantage of technologies such as kernel bypass 
and zero-copy networking to reduce latency and improve throughput. These optimizations make 
Redpanda well-suited for high-throughput, low-latency use cases, where timely data processing is 
critical. Moreover, Redpanda aims to simplify administration tasks by providing a more intuitive 
interface for managing clusters and topics. It offers a simplified deployment model, making it easier to 
set up and configure compared to Kafka. Redpanda's compatibility with Kafka's APIs allows 
organizations to migrate their existing Kafka applications to Redpanda seamlessly, reducing the barrier 
to adoption for those already invested in Kafka. 

While not a direct alternative to Kafka, StreamSets is a data integration platform that can work with 
Kafka, among other technologies. StreamSets provides a visual interface for designing, executing, and 
managing data pipelines. It simplifies the process of ingesting and processing data from various 
sources, including Kafka, by offering built-in connectors and transformations. StreamSets focuses on 
making data integration and pipeline development easier, especially for organizations that may not 
have dedicated engineering resources for managing complex streaming platforms. Its visual interface 
allows users to design data flows using a drag-and-drop approach, reducing the need for manual 
coding. This abstraction layer makes it accessible to a wider range of users, including data analysts and 
less technically inclined individuals, enabling them to create and manage data pipelines efficiently [45]. 
In addition to its ease of use, StreamSets offers robust functionality for data governance, monitoring, 
and error handling. It provides features like data lineage, data quality checks, and error tracking, which 
are crucial for maintaining data integrity and reliability in streaming pipelines. By integrating with 
Kafka, StreamSets offers organizations a streamlined solution for managing their data integration 
needs. 

Estuary Flow is a relatively new player in the real-time data infrastructure space, aiming to provide a 
simpler and more frictionless alternative to Kafka. It offers an easy-to-use, cloud-native event 
streaming platform designed to handle large-scale data ingestion and processing. Estuary Flow 
abstracts away much of the underlying complexity associated with Kafka while still delivering reliable 
and performant data streaming capabilities. One of Estuary Flow's primary focuses is on simplicity. It 
provides a user-friendly interface and intuitive workflows for managing data pipelines, making it 
accessible to a broader range of users. The platform handles the complexities of topics, partitions, and 
consumer groups behind the scenes, allowing users to focus on their data processing logic instead of 
managing infrastructure details. Scalability is another area where Estuary Flow excels. It is built to 
handle large-scale data workloads, offering horizontal scalability by automatically scaling resources 
based on demand. This elastic scaling capability enables organizations to handle varying data volumes 
without manual intervention, ensuring smooth operations during peak loads. Estuary Flow also 
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emphasizes its cloud-native design, leveraging the scalability and resilience of cloud platforms. It 
seamlessly integrates with popular cloud providers, allowing users to take advantage of managed 
services for storage, compute, and monitoring. By utilizing cloud-native capabilities, Estuary Flow 
reduces the operational overhead of managing infrastructure and simplifies the deployment and 
management process. 

2.8 Kafka introduction and comparison with common alternatives Current 
Limits of the Cloud-to-Edge technologies 

Cloud-to-Edge technologies have gained popularity due to the rise of IoT and edge computing use 
cases. However, certain challenges need to be addressed for the effective implementation of these 
technologies. One significant limitation is the limited processing power of edge devices compared to 
cloud servers. This constraint restricts the amount of data that can be processed at the edge and may 
necessitate sending data to the cloud for further analysis. Additionally, edge devices may have limited 
storage capacity, making it challenging to store large amounts of data locally. This limitation also 
hampers the ability to perform local analytics, often requiring data to be sent to the cloud for storage. 
Connectivity issues pose another obstacle for Cloud-to-Edge technologies. Edge devices often operate 
in environments with limited or intermittent connectivity, which makes it difficult to send data to the 
cloud for processing and analysis. This limitation also affects real-time analytics at the edge. 

Security concerns are a significant consideration when implementing Cloud-to-Edge technologies. 
Edge devices are more vulnerable to security threats, including hacking and data breaches, which can 
compromise the overall network security. Therefore, additional security measures need to be in place 
to safeguard edge devices and data. Integration challenges arise when dealing with various edge 
devices and cloud platforms. The process of integrating different devices and platforms can be 
complex, requiring significant investment in time and resources to ensure compatibility and 
interoperability [64]. Cost is another limitation associated with Cloud-to-Edge technologies. 
Implementing these technologies involves substantial capital and operating costs, especially when 
deploying and managing large-scale edge computing infrastructure. 

To overcome these limitations, a combination of technical and non-technical solutions is required. 
From a technical perspective, deploying suitable edge computing infrastructure like AWS Greengrass, 
Microsoft Azure IoT Edge, and Google Cloud IoT Edge can provide local compute, messaging, and 
machine learning capabilities, even in the absence of an internet connection. Improved connectivity 
can be achieved through the use of high-speed wireless networks such as 5G. Hybrid networking 
architectures combining edge computing with cloud computing can address connectivity challenges by 
enabling data transfer between edge devices and the cloud [65]. Security measures, including 
encryption, access control, and data integrity checks, need to be implemented to mitigate security 
concerns. Device management solutions such as remote monitoring and over-the-air updates can 
further enhance security. Integration platforms like Apache NiFi can simplify the integration of diverse 
edge devices and cloud platforms by providing connectors and adapters for different data sources and 
platforms. Cost optimization strategies like leveraging open-source software, containerization, 
automation, and serverless computing can help reduce expenses and enhance efficiency. 

In the context of the Zero Swarm Trials, certain limits need to be considered when implementing cloud-
to-edge technologies. Latency can impact real-time decision-making and responsiveness, while 
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bandwidth limitations can pose challenges when multiple AMRs generate continuous data streams. 
Optimizing algorithms for resource-constrained AMRs is crucial, and robust security measures must be 
in place to protect the AMR fleet and sensitive data. Scalability, maintenance, and updates are also 
important factors to consider in the context of an expanding AMR fleet. By addressing these limits and 
tailoring solutions to the specific requirements of the AMR fleet, the benefits of cloud-to-edge 
technologies can be harnessed while overcoming the challenges related to latency, bandwidth, edge 
device capabilities, security, scalability, and maintenance. 

3 Zero-SWARM Distributed Streaming Computing in the 
Cloud-to-Edge continuum. Propose Architecture 

3.1 Kafka & Edge System Monitoring using MQTT 

In today's interconnected world, the monitoring of edge systems has become increasingly important. 
Edge systems encompass a wide range of devices, sensors, and monitoring systems that are deployed 
at the periphery of a network, closer to the data source. These systems generate vast amounts of data 
that need to be collected, analyzed, and monitored in real-time to ensure efficient operation and 
timely decision-making. This is where Kafka, a distributed streaming platform, comes into play. Kafka 
provides a robust and scalable solution for edge system monitoring, offering a variety of functionalities 
that are well-suited for this purpose. One of the key functionalities of Kafka in this context is data 
collection. Kafka can seamlessly receive data from various edge devices, sensors, and monitoring 
systems. These devices can publish data directly to Kafka topics using Kafka producers, allowing for a 
centralized and efficient data collection mechanism. Furthermore, Kafka's distributed streaming 
capabilities enable real-time streaming of data from edge devices to centralized monitoring systems 
[47]. By consuming the data through Kafka consumers, real-time analysis, aggregation, or filtering can 
be performed, providing immediate visibility into the state of the edge systems. This real-time 
streaming capability is crucial for effective monitoring and rapid response to any issues or anomalies 
detected at the edge. 

Another important aspect of Kafka in edge system monitoring is its fault-tolerant design. Kafka ensures 
that data is reliably captured and processed, even in the presence of intermittent network connectivity 
or device failures. By allowing data replication and distribution across multiple Kafka brokers, Kafka 
provides resiliency to edge system monitoring applications, minimizing the risk of data loss or system 
downtime. Scalability is yet another strength of Kafka. As the number of edge devices or data sources 
increases, additional Kafka brokers can be added to the cluster, allowing the system to handle the 
growing volume of data. This scalability ensures that edge system monitoring can accommodate 
deployments of any size, from small-scale setups to large-scale enterprise environments [48]. 
Moreover, Kafka facilitates edge-to-cloud integration, serving as a data ingestion layer that connects 
edge systems to cloud-based monitoring and analytics platforms. With Kafka, edge devices can publish 
data to Kafka topics, which can then be forwarded to cloud services for further analysis, long-term 
storage, or visualization. This integration enables hybrid monitoring solutions that leverage both edge 
and cloud resources, combining the benefits of real-time monitoring at the edge with the power of 
cloud-based analytics. Additionally, Kafka's integration with stream processing frameworks like Apache 
Kafka Streams or Apache Flink allows for on-the-edge data processing and analytics. This means that 
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edge devices can perform real-time data transformations, aggregations, or anomaly detection directly 
within the Kafka ecosystem before sending processed data to centralized systems. This capability 
enables edge systems to derive insights and make informed decisions in real-time, without the need 
for data to be transported to a separate processing infrastructure. 

Combining Kafka and MQTT in a manufacturing cloud-edge architecture offers a robust and scalable 
solution for data streaming and communication. While Kafka excels in data streaming, integration, 
persistence, and stream processing, MQTT shines in lightweight and efficient communication, the 
publish-subscribe model, and edge-to-cloud connectivity. In zero-Swarm, by leveraging the strengths 
of both technologies, a comprehensive and efficient architecture can be established for manufacturing 
environments [49]. Kafka plays a critical role in data streaming and integration. It can collect, stream, 
and integrate large volumes of data from various sources, including edge devices, sensors, and systems 
distributed across the production line or intra-logistics devices. Kafka's ability to handle high data 
volumes and its support for real-time streaming make it an ideal choice for collecting data from 
manufacturing assets and enabling seamless integration with downstream systems. 

Furthermore, Kafka provides durable storage of data streams, allowing for the retention of data for a 
longer period. This feature is invaluable for historical analysis, replaying events, and serving as a 
reliable data source for downstream systems. By leveraging Kafka's data persistence capabilities, 
manufacturers can gain insights from historical data and perform in-depth analysis of manufacturing 
processes. In addition, Kafka's integration with stream processing frameworks such as Kafka Streams 
or Apache Flink enables real-time data transformations, analytics, and complex event processing. 
These frameworks can be utilized to perform data enrichment, aggregation, or anomaly detection on 
the collected manufacturing data. By leveraging Kafka's stream processing capabilities, manufacturers 
can derive real-time insights, detect anomalies, and trigger timely actions for process optimization and 
quality control [50]. On the other hand, MQTT serves as a lightweight and efficient communication 
protocol, specifically designed for constrained environments. It is well-suited for edge devices with 
limited resources and intermittent connectivity, which are often found in manufacturing 
environments. MQTT enables efficient communication between edge devices and cloud or edge 
servers, ensuring reliable transmission of real-time data and device management commands. The 
publish-subscribe model of MQTT allows devices to publish messages to specific topics, and interested 
subscribers receive those messages. This decoupled communication model enables efficient data 
distribution across the manufacturing system. MQTT brokers receive data from edge devices and 
publish it to relevant Kafka topics, enabling seamless integration between MQTT and Kafka [51]. This 
integration ensures that data published by edge devices can be efficiently consumed and processed by 
Kafka consumers or stream processing frameworks. Moreover, MQTT facilitates edge-to-cloud 
connectivity, enabling communication between edge devices and cloud services. Edge devices can 
publish data to MQTT brokers, which then forward the data to subscribed consumers, including cloud-
based analytics platforms or Kafka for further processing. This integration allows for the seamless flow 
of data between edge devices and cloud-based systems, enabling comprehensive monitoring, analysis, 
and decision-making in manufacturing environments. 

As shown in Figure 7, Kafka and MQTT are integrated together to accomplish the data needs of the 
consumer. 
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Figure 7: Kafka and MQTT integration 

3.2 Integration of Kafka into the Zero Swarm System 

The integration of Kafka into the Zero Swarm system, for example referring to the management of the 
Automated Guided Vehicle (AMR) fleet, set of subscribers, enhances the system's messaging and 
communication capabilities. Kafka serves as a reliable and scalable messaging system for handling data 
streams and facilitating communication between the AMR and the subscribers. 

Kafka plays a crucial role in facilitating real-time data streaming from the AMR within the Zero Swarm 
system. The AMR generates various data types such as sensor readings, status updates, or other 
relevant information. These data streams can be published as messages to specific Kafka topics, 
ensuring that the data is available for consumption by the subscribers in real-time [52]. By leveraging 
Kafka for data streaming, the Zero Swarm system benefits from the inherent advantages of Kafka's 
distributed streaming capabilities. The AMR can publish data to Kafka topics, and Kafka takes care of 
efficiently distributing the data across the Kafka brokers. This ensures that the data is reliably delivered 
to the subscribers, allowing them to receive real-time updates and stay synchronized with the AMR's 
status and activities. 

To handle the messaging infrastructure of the Zero Swarm system, a Kafka cluster is set up. The cluster 
consists of multiple Kafka brokers running on different servers, providing fault tolerance and 
scalability. The AMR acts as a Kafka producer, publishing messages to the Kafka cluster, and the 
subscribers connect to the cluster as Kafka consumers. The Kafka cluster's fault-tolerant design ensures 
the reliability of message delivery even in the presence of failures. Each message published by the AMR 
is stored in one or more Kafka brokers, with replication across multiple brokers. If a broker fails, the 
data is still accessible from other brokers, ensuring uninterrupted communication between the AMR 
and the subscribers [53]. Moreover, the Kafka cluster's scalability is a significant advantage in the Zero 
Swarm system. As the number of subscribers or the data volume increases, additional Kafka brokers 
can be added to the cluster. This allows the system to handle the growing load and ensures that the 
messaging infrastructure can scale seamlessly to accommodate the increasing demands of the Zero 
Swarm system. 

In Kafka, topics are used to categorize and organize messages. In the Zero Swarm system, Kafka topics 
can be defined to categorize the different types of messages generated, for example, by the AMR. For 
example, topics can be created for sensor readings, status updates, or specific events. This 
categorization enables efficient message routing and selective consumption by the subscribers based 
on their interests and requirements. Furthermore, Kafka topics can be divided into multiple partitions, 
which allow for parallel processing and distribution of messages across the Kafka brokers. Each 
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partition can be assigned to a specific Kafka broker, enabling load balancing and increasing the system's 
throughput. Partitioning also ensures that messages within a topic can be processed in parallel, 
enhancing the overall efficiency of the Zero Swarm system. 

The set of subscribers in the Zero Swarm system connect to the Kafka cluster as Kafka consumers. They 
subscribe to the relevant Kafka topics based on their interests and requirements. As the AMR publishes 
messages to the Kafka topics, Kafka ensures that the messages are delivered to the subscribed 
consumers in real-time. This enables the subscribers to receive timely updates and stay informed 
about the AMR's status and activities. The subscribers can process the received messages according to 
their specific needs. They can perform real-time analysis, trigger actions based on certain events, or 
update their own internal state based on the received data [54]. Kafka's efficient message distribution 
mechanism ensures that each subscriber receives all the messages from the subscribed topics, allowing 
for synchronized communication and coordinated actions within the Zero Swarm system. 

The Zero Swarm system can leverage several key features of Kafka to enhance its messaging and 
communication capabilities. First, Kafka's scalability ensures that the system can handle increasing 
data volumes or accommodate additional subscribers in the future. This scalability is particularly 
valuable in scenarios where the Zero Swarm system may expand, such as adding more AMRs or 
integrating with a larger ecosystem of devices and applications. Second, Kafka's fault-tolerant design 
guarantees reliable message delivery even in the face of failures. If a Kafka broker or a network 
connection experiences a temporary disruption, Kafka ensures that the messages are still accessible 
from other brokers, preventing data loss and maintaining continuous communication within the Zero 
Swarm system. Additionally, Kafka's support for data retention is advantageous for the Zero Swarm 
system. Subscribers can consume messages even if they join the system later or experience temporary 
disruptions. Kafka retains messages for a configurable period, allowing new subscribers to catch up on 
missed messages and ensuring data availability for subscribers that may have intermittent 
connectivity. The combination of Kafka's scalability, fault tolerance, and data retention features 
provides a robust foundation for reliable and efficient messaging and communication within the Zero 
Swarm system. It enables seamless data streaming, message delivery, and synchronization between 
the AMR and the subscribers, facilitating effective coordination and collaboration in the context of the 
system's objectives. 

3.3 OPC-UA and the combination with Kafka and MQTT 

The combination of OPC-UA, Kafka, and MQTT in Cloud-to-Edge architectures offers a range of 
possibilities for efficient and effective data communication. One approach is using OPC-UA to acquire 
data from edge devices and systems, which can then be published to Kafka topics using OPC-UA servers 
as Kafka producers. Kafka's distributed streaming platform excels at handling large data streams in 
real-time, allowing for scalable and high-throughput communication between the edge and the cloud 
[55]. By organizing data streams into Kafka topics, ingestion and processing in the cloud become more 
efficient, supporting analytics, machine learning, and other applications. 

Another integration option involves publishing OPC-UA data to MQTT topics through OPC-UA servers 
acting as MQTT publishers. MQTT, a lightweight messaging protocol widely used in IoT and edge 
computing, facilitates low-overhead and efficient data transmission. This bi-directional communication 
protocol is suitable for sending data from the edge to the cloud and receiving commands or 
instructions from the cloud to the edge. MQTT brokers can effectively manage and route MQTT 
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messages, ensuring scalable and reliable communication between the edge and the cloud. 

Furthermore, Kafka or MQTT can transmit data to OPC-UA servers acting as subscribers, allowing 
bidirectional communication. This enables data to flow from the edge to the cloud via Kafka or MQTT 
for cloud-based processing or analysis. The results can then be sent back to the edge via OPC-UA, 
enabling near-real-time decision-making based on cloud-based analytics or machine learning models 
[56]. This approach empowers the edge with valuable insights and allows for local actions based on 
the cloud's processing capabilities. In zero-Swarm, by combining OPC-UA with Kafka and MQTT, a 
scalable and flexible Cloud-to-Edge architecture can be created. OPC-UA ensures standardization, 
security, and interoperability for industrial data, while Kafka and MQTT provide scalable and efficient 
messaging capabilities for data ingestion, processing, and transmission. The specific combination and 
configuration of these technologies depend on the requirements and use cases of the Cloud-to-Edge 
architecture in question. 

In the context of the Zero Swarm project, the combination of OPC-UA, MQTT, and Kafka proves to be 
a robust and efficient system for managing the fleet of AMRs (Automated Guided Vehicles). OPC-UA 
integration establishes standardized and secure connectivity with the AMRs, enabling access to real-
time data such as position, status, and battery levels. MQTT facilitates lightweight and seamless 
communication between the algorithm and the AMRs, enabling control over movements, routes, and 
tasks [57]. Kafka serves as a distributed streaming platform for processing the high-volume AMR data, 
supporting real-time monitoring, historical analysis, and advanced analytics. This integrated 
architecture empowers the algorithm to effectively manage and optimize the fleet's operations, 
enhancing overall performance and productivity. Furthermore, establishing an effective connection 
between edge and cloud environments [58] using IT protocols like Kafka over MQTT requires careful 
consideration of various factors. These include the specific requirements of the use case, technical 
capabilities of the edge and cloud systems, and the overall architecture and infrastructure of the 
organization. While the following guidelines are not exhaustive, they provide a starting point for 
designing a robust edge-cloud connection using Kafka over MQTT. First and foremost, it is essential to 
choose the right protocol based on your requirements and constraints. Kafka excels at handling high 
volumes of data in real-time, making it suitable for scenarios like IoT applications. On the other hand, 
MQTT is designed for constrained environments with limited processing power and bandwidth. Select 
the protocol that aligns best with your specific needs. Efficient data serialization is crucial when 
transmitting data between edge and cloud environments. This involves minimizing bandwidth usage 
and reducing processing overhead. To achieve this, opt for a lightweight and efficient serialization 
format such as Protocol Buffers, which is supported by both Kafka and MQTT. Implement proper data 
serialization and deserialization techniques in your edge and cloud applications. Connectivity in edge 
devices can be unreliable due to remote locations or intermittent network issues. It is vital to design a 
robust and fault-tolerant edge-cloud connection to ensure reliable data delivery. Implement 
mechanisms like message queuing, buffering, and retries to overcome connectivity disruptions and 
maintain data integrity. 

Security should be a top priority when transmitting data between edge and cloud environments. Edge 
devices are often vulnerable to security threats, and data protection becomes paramount. Implement 
security best practices such as data encryption, authentication, and authorization to safeguard your 
data. Utilize secure communication protocols like SSL/TLS for transmitting data between edge and 
cloud. Considering the limited computing resources in edge environments, optimizing the performance 
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of the edge-cloud connection is crucial. Minimize the overhead of data serialization, compression, and 
encryption to reduce resource consumption. Efficient messaging patterns like batching and 
compression can further reduce network data transmission. Additionally, employ edge caching and 
data aggregation techniques to minimize data sent to the cloud and optimize processing logic for 
reduced latency and improved performance. Moreover, scalability and extensibility are essential 
factors to consider when designing the edge-cloud connection. Ensure the architecture can handle 
increasing data volumes and a growing number of devices. Plan for future changes in requirements 
and technology by designing the connection to be flexible and adaptable. Thorough testing and 
monitoring are crucial to ensure the performance, reliability, and security of the edge-cloud 
connection. Conduct comprehensive testing in realistic environments to validate the effectiveness of 
the design. Set up robust monitoring and logging mechanisms to detect and diagnose issues in real-
time. Regularly review and update the edge-cloud connection to align with changing requirements and 
ensure optimal performance. 

3.4 A conceptual harmonized Edge-to-Cloud Architecture  

The Figure 8 depicts a conceptual system architecture for Zero Swarm project comprising several 
interconnected layers: MQTT Broker, Cloud, Cloud to Edge, Edge Getaway and Edges Devices. Each of 
these components plays a crucial role in enabling efficient data communication and processing within 
the system. At the center of the diagram is the MQTT Broker, which serves as a message broker, 
facilitating the communication between various devices and applications. As reported above, MQTT 
(Message Queuing Telemetry Transport) is a lightweight messaging protocol commonly used in IoT 
(Internet of Things) applications due to its low overhead and efficient data transfer capabilities. The 
MQTT Broker acts as a central hub, receiving and distributing messages among the different 
components of the system. 

Starting from the bottom, the Edges Devices section in the diagram represents a collection of edge 
nodes, which are distributed devices or sensors located close to the data source or the edge of the 
network. These edge nodes are equipped with various capabilities, such as PLC logic, robots, and also 
edge AI (Artificial Intelligence). Whereas, PLC logic refers to programmable logic controllers, which are 
industrial control systems used for automation and monitoring of machinery or processes. Robots 
within the edge nodes can perform tasks autonomously or with minimal human intervention 
(shopfloor operators for example). Edge AI refers to the deployment of AI algorithms and models 
directly on edge devices, enabling real-time processing and decision-making capabilities, using ONNX 
technology. 

The diagram also includes an edge gateway, which serves as a crucial component in the system 
architecture. An edge gateway is a device that acts as a bridge between the edge nodes and the 
broader network, facilitating communication and data transfer between the two. It provides a secure 
and reliable connection between the edge environment and the external networks or cloud 
infrastructure. The edge gateway plays a vital role in the system by enabling connectivity and 
interoperability between the diverse range of edge nodes and the rest of the network. It serves as a 
centralized point for managing and controlling the flow of data between the edge environment and 
the external systems. This layer has also a system monitoring and data stream management module 
based on Kafka. Kafka is a distributed streaming platform that enables the collection, storage, and real-
time processing of large-scale data streams. It acts as a highly scalable and fault-tolerant backbone for 
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data streaming within the edge server environment. By incorporating Kafka into the architecture, the 
system gains the ability to monitor and analyze data flowing through the edge nodes in real-time, 
enabling efficient data processing and decision-making at the edge. Note that all modules 
communicate downwards using the OPC-UA protocol. 

 
Figure 8: Zero Swarm Conceptual Architecture 

The Cloud components, belonging to Cloud and Cloud to Edge layers, in the diagram represent a 
centralized and scalable computing infrastructure that provides additional processing power, storage, 
and advanced services for the system. Those layers are divided into three main modules: the 
application layer, AI layer, and middleware for data streaming. The application layer within the cloud 
encompasses various software applications and services that utilize the data generated by the edge 
nodes and the edge server environment. These applications can range from data analytics and 
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visualization tools to higher-level applications specific to the use case of the system. The application 
layer enables users to access and interact with the system, extracting insights and making informed 
decisions based on the data collected from the edge nodes. 

Deliverable D4.4: Federated data infra & toolkit for data-driven model v1 [66], provides a possible 
implementation architecture of the Cloud and Cloud to Edge layers, showing the high-level 
architecture of several components that can be implemented to satisfy the requirements of storing 
the data gathered from the shop floor and use them to train AI/ML models.  

The Frontier DB of the Cloud to Edge Layer can be implemented using the Collecting Platform 
referenced in [66], that aims to gather various data types from the MQTT broker showed in Figure 8 
and direct them to designated destinations. Its primary objective is to streamline the integration 
between the Industry 4.0 domain, which employs its unique formats, data types, and protocols, and 
the IT/OT domain, which encompasses different types of information. The data gathered can be made 
available to another component describe in [66], the MLOps Framework, that can be used in the AI 
sub-layer in the Edge to Cloud layer of figure 8. 

The AI layer in the cloud is responsible for hosting and executing advanced AI algorithms and models. 
By leveraging the computational resources of the cloud, the AI layer can perform complex data 
analysis, machine learning, and predictive modeling tasks. This layer can enable sophisticated analytics 
and decision-making capabilities by processing and interpreting the data collected from the edge 
nodes. The middleware, represented in the cloud component, serves as a bridge between the edge 
nodes and the cloud. It facilitates the seamless and efficient transfer of data from the edge 
environment to the cloud for further processing and analysis. The middleware layer ensures reliable 
and secure data streaming, enabling the continuous flow of data from the edge nodes to the cloud 
components. Hence, the diagram illustrates a system architecture that combines edge computing 
capabilities with cloud infrastructure. In these levels, communication can take place via Restful calls 
and each individual module can use its own DB for storing the data required for proper functioning. 

3.5 Cloud-to-Edge data streaming & intelligent object distribution, the best practice 
to deliver Zero-SWARM’s solutions  

The main concept of the Zero-SWARM project, which focuses on delivering a Cloud-to-Edge solution 
and distributing intelligent agents to support various functionalities such as prediction, predictive 
maintenance, math-optimizers, scheduling, and digital twins, requires a well-defined and systematic 
approach. To successfully implement this approach, several crucial steps need to be followed. The first 
step is to define the requirements of the Cloud-to-Edge architecture. It is essential to clearly identify 
the specific use cases that the application needs to support, such as prediction, predictive 
maintenance, math-optimization, scheduling, and digital twins. Additionally, understanding the data 
sources, processing requirements, and latency constraints of the edge computing environment is vital 
in this phase [60]. Once the requirements are defined, the next step is to select appropriate edge 
devices that align with the identified needs. Factors such as processing power, memory, connectivity, 
and power consumption should be considered when choosing edge servers, gateways, or IoT devices. 
These devices should be capable of running intelligent agents, math-optimization algorithms, and 
supporting the desired use cases. 

After selecting the edge devices, it is crucial to choose an appropriate edge computing framework that 
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provides the necessary capabilities for deploying, managing, and orchestrating intelligent agents at the 
edge. Evaluating popular frameworks like Apache Edgent, Eclipse ioFog, and TensorFlow Lite for Edge 
based on features, performance, and ease of use can help in making an informed decision. The 
development of intelligent agents, math-optimization algorithms, and digital twins is the next step in 
the process. These components should be designed using suitable machine learning or statistical 
techniques for prediction, predictive maintenance, and scheduling [61]. Optimizing the agents for edge 
computing environments in terms of size, complexity, and processing requirements is essential. 
Compatibility with the selected edge framework is also a crucial consideration. Once the intelligent 
agents are developed, they need to be deployed to the edge devices using the chosen edge computing 
framework. Secure deployment practices, including encryption, authentication, and access controls, 
should be followed to ensure data and computation confidentiality and integrity. In cases where 
models are trained in the cloud, distributed deployment to the edge may be necessary. 

To ensure proper functioning of the deployed agents, monitoring and management capabilities should 
be implemented. Real-time monitoring of performance, health, and status is crucial. Mechanisms for 
remote configuration, updates, and maintenance should also be in place. Integration of the edge 
agents with the cloud is an important aspect of the Cloud-to-Edge architecture. This integration 
enables centralized management, coordination, and data analysis. Data synchronization, aggregation, 
and analytics mechanisms should be implemented to leverage the collected data for higher-level 
processing, decision making, and system optimization in the cloud. Testing and validation are 
necessary to ensure the performance, accuracy, and reliability of the deployed intelligent agents, 
math-optimization algorithms, and digital twins in the edge computing environment [62]. Different 
testing methodologies, including simulation, emulation, and real-world testing, should be used to 
verify that the agents meet the defined requirements. The Cloud-to-Edge architecture should be 
continuously improved through iterative iterations based on feedback from testing, monitoring, and 
performance analysis. Real-world data and performance metrics should drive the refinement of 
intelligent agents, math-optimization algorithms, and digital twins. Staying up-to-date with edge 
computing technologies and best practices is crucial for optimization and enhancement. Security and 
privacy considerations are of utmost importance throughout the Cloud-to-Edge architecture. Robust 
measures such as encryption, authentication, access controls, and other security mechanisms should 
be implemented to protect data and computations at all stages of the architecture. Also, scalability 
and resilience are essential aspects to consider. The architecture should be designed to handle varying 
workloads, changing edge environments, and potential failures. Load balancing, fault tolerance, and 
redundancy mechanisms should be in place to ensure high availability and reliability of the intelligent 
agents and math-optimization algorithms. 

Documentation and knowledge sharing are valuable practices for future reference and knowledge 
transfer. Properly documenting the architecture, design decisions, and implementation details ensures 
that the knowledge is preserved and can be utilized by others. Implementing cloud-to-edge data 
streaming and intelligent object distribution in a fleet management system, such as one that manages 
a fleet of Automated Guided Vehicles (AMRs), offers significant benefits. By adopting these 
approaches, latency can be minimized, bandwidth usage can be optimized, scalability can be 
enhanced, and reliability can be improved [63]. Real-time decision-making, efficient data 
management, and effective task allocation within the AMR fleet can be achieved. Ultimately, 
leveraging cloud-to-edge technologies enables the optimization of system performance, 
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responsiveness, and overall management of AMR operations. 

The zero-Swarm team can play a role of pioneering in exploring the combined technological layers 
described in the deliverable, to enable real-time decision-making by intelligent agents in cloud-to-edge 
architecture, also considering the novel aspects described in the next chapter and their motivations. 

4 Beyond the state of the Art. Edge-to-Cloud Distributed 
Stream Computing Using IEC  61499 and OPC-UA over 
Kafka and MQTT 

4.1 How the zero-Swarm Cloud-to-Edge Distributed Streaming platform enable 
novel applications 

In the previous chapter, we have seen how, in zero-Swarm, technological layers could be combined to 
create a harmonized infrastructure enabling, in the cloud-to-edge continuum, distribution of 
intelligent agents that solicit data streaming, for example for learning processes and to allow accurate 
and real and near-real-time decision making without forgetting the CPSoS paradigm.  

Now, we explore how this architecture enables novel applications whose characteristics depend on 
the particular case. 

In the zero-swarm "Distributed stream computing" platform, engineers could/should consider 
implementing the following element to set new benchmarks for distributed intelligent control 
applications. 

Multi-Layered Adaptivity (MLA):  MLA introduces a novel algorithmic approach that allows for 
adaptivity at both cloud and edge levels, optimizing data flow and computation tasks in real-time. This 
is a departure from static task allocations in conventional systems. 

The Multi-Layered Adaptivity concept envisions a dynamic, self-optimizing architecture where 
computational tasks and data streams can be adaptively managed at both cloud and edge levels. This 
flexibility contrasts sharply with traditional systems where tasks are statically allocated, leading to 
inefficiencies in resource utilization. 

The key ingredients to apply MLA are: 

● Adaptive Task Scheduler: for example, a machine learning-based scheduler evaluates current 
loads, bandwidth, and processing capabilities at both edge and cloud levels. Depending on the 
requirements and available resources, it dynamically reallocates tasks. 

● Data Prioritization Engine: Intelligent algorithms prioritize which data should be processed 
immediately at the edge and which can be deferred for cloud-based analytics. For example, 
data related to immediate failure will be prioritized over routine operational statistics. 

● Load Balancer: Continuously monitors resource utilization and shifts loads between edge and 
cloud in real-time, allowing for seamless scalability. 

● As a practical example, we can imagine a manufacturing plant with a complex array of sensors 
and machines engaged in various tasks (cutting, welding, assembly, etc). The Multi-Layered 
Adaptivity concept can be applied, for example, as follows: 
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● Real-time Monitoring: Sensors continuously monitor various parameters such as temperature, 
pressure, and material flow. Cameras, in the process, can also be a source of data. 

● Edge-Level Decisions: When an overheating issue is detected in a welding machine, the edge-
level algorithms immediately halt the operation and notify the control room, thus averting 
potential equipment failure, process/product defects, or any hazard. 

● Cloud-Level Analysis: The cloud-level system analyzes the aggregate data to identify patterns 
or trends. It may recognize that issues occur more frequently at certain times, signaling the 
need for preventive maintenance schedules. 

● Adaptive Task Re-Allocation: During peak hours, when edge devices are overloaded, the 
scheduler may reroute some less critical data analysis tasks to the cloud, freeing up edge 
resources for real-time monitoring and control. 

By incorporating Multi-Layered Adaptivity in the zero-swarm proposed framework, the manufacturing 
plant gains real-time responsiveness and benefits from broader trends and efficiencies discerned at 
the cloud level. 

Dynamic Agent Allocation: Machine learning algorithms can be included in the platform to dynamically 
allocate intelligent agents in response to system requirements, improving overall system efficiency. 

Edge-Centric Analytics and Federated Machine Learning: Developing novel edge analytics algorithms 
that can make local decisions without necessarily requiring cloud communication, thus reducing 
latency and improving system responsiveness. For example, levering machine learning and federated 
ML to enable edge devices to train models locally, thus decreasing data transfer volumes and 
improving real-time capabilities (see D4.3) 

CPSoS-Ready Modules combined with Metamodeling for Standardization and Performances: While 
introducing plug-and-play modules specifically designed for automatic discovery allows for seamless 
integration and Standardization (see D5.2), metamodeling entails creating abstract, higher-level 
models that encapsulate the essential elements and relationships. This metamodel serves as a 
template/representation serving the engineering &/or development process and the operations.  In 
delivery 4.3, the concept of metamodels is applied to the analytical agents. 

Data Lineage and Provenance: Implementing traceability features into the data streams enables every 
piece of data to be audited and validated for its entire lifecycle. 

The novel aspects of the zero-Swarm platforms provide a holistic, adaptable, and future-proof solution 
that caters to the complexity of modern manufacturing processes and the need for real-time analytics 
and control. 

It offers compelling advantages for vendors looking to provide a cutting-edge, integrated solution and 
for manufacturers aiming to optimize their operations and gain deeper insights into their processes. 

About the Engineering /Solution Provider, we can mention: 

Comprehensive Solution: Leveraging Kafka, MQTT, and OPC-UA provides a unified platform for data 
streaming, control, and interoperability, reducing the complexity for end-users and increasing the 
platform's appeal. 

Competitive Edge: a unique, high-performance solution. Features like Multi-Layered Adaptivity and 
Metamodeling can distinguish the solution, providing unique selling points. 
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Scalability: The platforms facilitate easy scaling, allowing you to support small and large manufacturing 
processes. 

Interoperability: Standardization ensures the solution can easily integrate with other systems, reducing 
friction during implementation. 

Resource Optimization: Dynamic task allocation and data prioritization algorithms can significantly 
reduce computational and bandwidth costs, improving overall ROI. 

Operational Efficiency: Advanced algorithms for real-time and near-real-time decision-making 
functionalities enable efficient use of resources, again strengthening the platform's ROI proposition. 

Future-Proofing: The architecture is designed to adapt to emerging technologies, thereby ensuring the 
platform remains current and minimizes obsolescence risks. 

Customizability and Scale: The applied paradigm of CPSoS and the standard IEC 61499 provide a 
standardization framework enabling customization and scalability, making the platform suitable for 
various sizes, types, and dimensions of manufacturing enterprises. 

From the end users (Manufacturers) point of view, the zero-swarm platform and paradigm provide 
some clear advantages even if the single benefit's importance depends on the type of process, level of 
automation, and dimension. We can mention: 

Operational Efficiency: Cloud-to-edge continuum ensured, and real-time decision-making also enabled 
at the edge level, minimizing downtimes, near-real-time process and product quality control, and 
optimizing machines and robots utilization. 

Cost Savings: The ability to dynamically allocate tasks between Edge and Cloud optimizes resource 
usage, reducing operational costs. 

Standardization is a standardized approach to system engineering, significantly reducing the 
complexity and cost of integrating disparate systems. 

Data-Driven Insights: Advanced analytics capabilities, both at the Edge and in the cloud, enable data-
driven decision-making for preventive maintenance, quality control, and process optimization. 

Risk Mitigation: Features like real-time monitoring and dynamic reallocation of tasks can significantly 
reduce operational risks such as machine failures or security vulnerabilities. 

Optimized Computing Resource Allocation: Multi-layered adaptivity ensures that resources are used 
where they are most needed, optimizing both edge and cloud computing capabilities. 

Real-time Data-Driven Intelligence: The platform provides real-time analytics and decision-making, 
significantly improving manufacturing processes and mitigating risks. Moreover, the intelligent agents 
and digital twin, directly connected to the platform as components, and the distributed computing 
capabilities enable deep insights into manufacturing processes, supporting prediction (eg, predictive 
maintenance), process control and optimization as well as quality assurance. 

Streamlined Integration: Thanks to the use of IEC 61499 and OPC-UA over Kafka and MQTT, the 
platform ensures seamless interoperability with existing manufacturing systems, reducing integration 
costs and complexities. 

5G Connectivity: The inclusion of 5G technology ensures low-latency, high-reliability communications, 
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enabling more effective real-time control and data streaming across the manufacturing floor. 

4.2 OPC-UA to Kafka 

There are different ways to integrate OPC-UA data into an Apache Kafka cluster.  

Kafka comes natively with five core APIs: Admin, Producer, Consumer, Kafka Streams and Kafka 
Connect API. Kafka Connect API is a tool to build and run reusable data import/export connectors that 
consume or produce streams of events from and to external systems and applications so they can 
integrate with Kafka. The API is designed for scalability and fault-tolerantly ingesting big data 
collections from heterogeneous sources into Kafka topics with low latency. Kafka Connect can run in a 
distributed execution mode, where in handles load balancing and fall outs, provided that your 
connector extends the Connector API. It’s a pluggable framework, enabling developers to implement 
their own connectors providing an API in many programming languages. There is, however, a strong 
community already providing hundreds of reusable connectors, for instance Apache PLC4X. PLC4X is a 
set of open-source libraries for communicating with industrial grade PLCs using industrial protocols in 
a uniform way. PLC4X Kafka connectors enable communication among industrial protocols (including 
OPC-UA) and Kafka.  

Beyond the connectors, there are a variety of architecture components available in Kafka Ecosystem: 
Broker, KSQL (a streaming SQL engine for Kafka), ZooKeeper (high-level service to maintain and 
manage the Kafka cluster), Kafka Connect Mirror (to copy topics from one cluster to another). 

Assuming we have edge-nodes with OPC-UA servers running in the shopfloor aggregating data from 
different sensors/actuators, we are evaluating three integration options for streaming data from/to 
Kafka which are shown in Figure 9, all using the current available PLC4X OPC-UA Kafka connector:  

1. Stream OPC-UA data from the server directly to a Kafka cluster in the cloud through a Kafka 
Connect OPC-UA connector. Data is streamed from the edge to the cloud as OPC-UA traffic.   

2. Use the Kafka Connect OPC-UA connector in the edge and stream data from edge to cloud as to 
Kafka traffic.  

3. Deploy a Kafka Broker in the edge and use a Kafka Connect Mirror in the cloud to replicate the 
information.  Data is streamed from edge to cloud a Kafka traffic. This option provides data 
persistence and stream processing capabilities in the edge.  

Most extended way to stream data from edge to cloud is to use MQTT as lightweight communication 
protocol. The novel OPC-UA Pub/Sub communication mechanism could offer similar performance than 
MQTT, however, a compatible Kafka Connector supporting this mechanism should be used. The 
selection among option 1 and 2 is not clear in terms of performance and would depend on the 
application. The main difference between option 1, 2 and option 3 is the use of the Kafka Broker in the 
edge, which provides data persistence, and can be beneficial in many applications with unstable edge-
cloud communications. 
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Figure 9: OPC-UA to Kafka architecture options 

4.3 MQTT and Kafka 

 
Figure 10: MQTT to Kafka architecture options 

Similarly, to the bridging options for integrating OPC-UA and Kafka already discussed in Section XX, 
here we evaluate different approaches for integrating MQTT with Kafka (Figure 10). An equivalent to 
the Kafka Connect OPC-UA connector is the Kafka Connect MQTT connector. The connector 
implements an MQTT client to read/write data from an MQTT Broker and translate it to Kafka. There 
are, however, very few open-source implementations available of these types of connectors, and the 
ones available have limitations (e.g., constraints in the number of topics). Some work is foreseen in the 
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project to come up with a robust and stable MQTT connector. Alternatively, there are some proprietary 
solutions solving this integration by using MQTT brokers with integrated Kaka features. We don’t 
consider the use of these proprietary solutions in Zero-Swarm. Assuming a similar scenario where we 
have edge-nodes with MQTT clients to publish/subscribe MQTT sensor data in a broker, we consider 
the following options based on open-source components: 

1.  Use an MQTT broker in the Cloud. The data is streamed from edge (MQTT client) to the cloud 
(MQTT broker) as MQTT traffic (TCP/IP).  

2. Use the MQTT Broker in the edge. The data is streamed from the edge MQTT Broker to the 
Cloud (Kafka MQTT connector) as MQTT traffic.  

3. Use the MQTT Kafka connector on the edge. Data is streamed from edge to cloud as Kafka 
traffic.  

4. Deploy a Kafka Broker on the edge, and the Kafka Connect Mirror in the cloud. Data is 
streamed as Kafka traffic from edge to cloud. This solution offers data persistence and stream 
processing capabilities in the edge. 

The best solution will always depend on the application requirements. Most common approaches 
adopted in IoT applications with distributed low power smart sensor is option 1. However, in industrial 
applications usually including an edge computing layer, option 4 could be preferable thanks to the data 
persistence feature. In all cases, the main technology gap is the development of a robust Kafka Connect 
MQTT connector.  

4.4 IEC 61499 over OPC-UA to Kafka 

4.4.1 OPC-UA in the IEC 61499 environment  

The focus here is the integration of IEC 61499 with OPCUA.   
This objective was achieved by creating Schneider Electric Ecostruxure Automation Expert (EAE) SFBs. 
These Function Blocks are dedicated to data transmission via the OPC UA communication protocol. 
These FBs use the OPC UA information model to exchange data between EAE applications and between 
EAE applications and other industrial applications.   
EAE allows to create an industrial control application based on the IEC 61499 standard, and additionally 
allows the configuration of OPC UA tags for the usage as OPC UA server. Besides this, OPC UA Client 
Function Blocks for the IEC61499 application acting as OPC UA Clients, able to connect to an OPC UA 
server in front of Kafka. This flexibility is necessary to connect IEC61499 over OPC UA to Kafka, which 
is a new approach for IEC61499 application, connecting to the datacentre layer, and is a focus within 
this deliverable and Zero-SWARM project.   
OPC UA defines a comprehensive information model for publishing and managing meta-information, 
and a system context to simplify automation engineering and systems integration. As implemented by 
the EcoRT OPC UA server, the OPC UA information model maps to the data structure of the IEC61499 
application. In this way, the server can present OPC UA information in an object oriented, re-usable 
way that is consistent with the application design. OPC UA data is device-based, which means that 
each device presents its own OPC UA server and data model.  

4.4.2 OPC UA Server   

To communicate with third-party equipment, the IEC-61499 application can behave as an OPC-UA 
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server on the one hand or as an OPC-UA client on the other.   

 
 Figure 11: OPC UA to Kafka connection 

As an OPC-UA server EAE uses a Composite Automation Type called CAT. From this CAT the variables 
are exposed in such a way that these are shared with the third party.  

4.4.3 OPC UA Client   

OPC UA client functionality for EAE is implemented by means of OPC UA client service function blocks, 
which are incorporated in the Service folder of the Standard.OPCUAClient library. Refer to the topic 
OPC UA Client.   
The OPC UA client function blocks include:   

 
Figure 12: SIFB OPCUA CONNECT 

OPCUA_CONNECT: Establishes a connection to an OPC UA server.  

 
Figure 13: SIFB OPCUA READ 
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OPCUA_READ: Reads a Value attribute of up to 32 variables. Reading mode can be cyclic or acyclic. In 
cyclic mode, this function block can poll the Value attribute of a node, and can read any attribute value 
by specifying the attribute ID for the attrib_id input. Supports all elementary data types and Value, 
Time, Quality (VTQ) types in IEC61499, but structures and arrays are not supported.   

 
Figure 14: SIFB OPCUA WRITE 

•OPCUA_WRITE: Updates Value attribute of up to 32 variables. Supports the elementary data types in 
IEC61499. Accepts VTQ input, provided the OPC UA server also supports VTQ input.   
   
• OPCUA_CALL: Invokes any method in the address space. Up to 32 input arguments of any elementary 
data types are supported. Up to 32 output arguments of any elementary types are supported.   

 
Figure 15: SIFB OPCUA CALL 

• OPCUA_MONITOR_EVENT: This function block:   
● Monitors alarms and events.   
● Supports OPC UA data access connections.   
● Supports method calls.   

 
 Figure 16: SIFB OPCUA MONITOR EVENT 

IN IEC 61499 engineering environment (EAE), a Composite Automation Type CAT is created for each 
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asset present in edge devices layer shown in Fig.1. CAT can represent sensors, machines, or actuators 
with OPC UA functionality. Once a CAT is created with the function, it can be reused in an application 
created in the Ecostructure Automation Expert. For topics and payload generation CAT in CAT structure 
is used. This way it saves time for an automation engineer to create a solution. After the application is 
created, the data gathered by the edge devices can be transferred to Kafka cluster in cloud via OPC 
UA.  

4.5 EC 61499 over MQTT to Kafka 

4.5.1 MQTT in the IEC 61499 environment   

The IEC 61499 runtime system implements the Mongoose library. This is a networking library for C/C++, 
which implements APIs for several protocols, among others also MQTT.   
This library implements the MQTT protocol with all its functionalities as SIFBs (Service Interface 
Function Blocks). A SIFB (Service Interface Function Block) provides an interface for a service that is 
programmed inside of the FB and can be used ‘out of the box’ when creating IEC 61499 applications. 
For the communication between the IEC 61499 platform and the IT level, such SIFBs will be used to 
exchange data via MQTT.  There are several SFBs for MQTT communication:   
   
● Publish: Sends a MQTT message to a connected MQTT broker   
● Subscribe: Subscribes and receives a MQTT message from a connected broker.   
● Connect: Establish a connection to the configured MQTT broker   
● Broker: Usage of an internal MQTT broker running on the IEC61499 platform.   

 
Figure 17: MQTT SIFB implementation   

The SIFBs for MQTT are supporting the QoS functionality and in combination with other FBs that are 
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used for encrypting messages, they provide an additional security feature that is defined on the 
application level.   
The physical objects of the real plant are designed in an object-oriented way with the IEC 61499-based 
extension for CAT in CAT nested hierarchy. This structure reflects the CAT in CAT hierarchy in the 
following way:   
This structure reflects the CAT in CAT hierarchy in the following way:   

● MQTT topic 1 is a version of the protocol     
● MQTT topic 2 is the location name: Reepack   

○ In our example it is the IEC 61499 application name representing the Reepack 
factory   

● MQTT topic 3 is the message type: Read/write   
○ It can be Read or Write messages depending on data being published to or to be 

subscribed to   
● MQTT topic 4 is Plant: Production Line   

○ In our example it is mapped to the IEC 61499 application which presents the 
Production line of Reepack   

● MQTT topic 5 is Machine/Object/Instance-name: ReeEco    
○ The Pasteuriser machine is presented with an instance of a CAT machine object    

● MQTT topic 6 is Object /Actor Name: Chain/Sealer/Film    
○ Chain and Sealer are presented with an instance of a CAT object which is inside 

the CAT machine object creating the CAT in CAT structure    
○ Under the topic name 6 the MQTT message payload transfers all the parts data 

from the dedicated objects   
● MQTT topic 7 is the payload   

○ Payload is the data gathered from the HW present on the shop floor. The 
payload is the value sent under a specific topic name to the MQTT broker   

 

 
 Figure 18: CAT in CAT mapping to MQTT Payload-structure in IEC61499 
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With the EcoStruxture Automation Expert, which is an engineering studio used to create IEC61499 
applications using IEC61499 Function blocks, a concept is developed to simplify the mapping between 
the IEC61499 Composite Automation Type (CAT) and the MQTT communication, where the 
automation engineer needs nothing to know about the MQTT structure.   
Figure 18 shows the CAT in CAT structure mapping of the application created in the IEC 61499 platform. 
The conceptual view gives an idea of the IEC61499 application and its connection to the MQTT topic’s. 
“Repack” is the name of the IEC61499 application using the IEC61499 platform. The application 
consists of a CAT created for a Production Line, containing objects in which all the machines of a 
production line are present. One of the machines is ReeEco represented as a CAT in above Fig 1, which 
contains parts of machines like “Chain”, “Sealer” or “Film”. For the MQTT Payload a JSON SFB in the 
IEC61499 environment provides the possibility to form a message in JSON format and send/receive 
that message to the MQTT broker using the MQTT publish/subscribe SFBs, where the appropriate Data 
Inputs and Data Outputs of a dedicated CAT-Object are included to transport them over one message.   

4.5.2 Connecting the IEC61499 automation platform over MQTT with the Kafka Environment   

Apache Kafka is a popular open-source streaming platform that makes it easy to share data between 
systems and applications. In T4.2 the goal is to create a communication between Kafka and the 
IEC61499 platform over MQTT communication protocol, because this MQTT protocol is already 
available in the IEC61499 platform and is going to be extended with the above mapping functionality 
on the CAT level. The final structure of the payload with the MQTT topic structure will be adapted to 
the needs of the Kafka MQTT structure and topics.    
There are different architectural ways to implement the bridge between IEC61499 over MQTT to 
Kafka.   

1. Kafka Connect for MQTT: Kafka Connect is a Framework extension by Apache Kafka 
which can connect external systems to Kafka for message exchange. The Kafka connector 
acts as an MQTT Client that can subscribe to various topics to collect MQTT messages 
from the MQTT broker and write them to Kafka Cluster as a native Kafka client   

2. MQTT Proxy: MQTT proxy offers an approach where MQTT messages are streamed into 
the Kafka cluster without an MQTT broker. This approach is easily scalable since the 
MQTT proxy application is stateless. In IEC 61499 platform we can adapt by having a 
Kafka cluster on the external platform and directly streaming the messages from the 
device to the Kafka cluster.    

3. MQTT Custom Bridge: Alternative to the two options above, it's possible to develop an 
application. The application can take over the transport of data from the IEC61499 node 
to Kafka and forward data from the Kafka cluster to IEC 61499 node.    

4. MQTT Broker Extension: Another possibility is to provide the MQTT broker the option of 
writing messages directly to Kafka with an extension.    

Considering the task partners of the Apache Kafka platform, it is decided to integrate existing open-
source solutions, which are available by option 1.   

4.6 IEC61499 to cloud over HTTP 

We developed a data-streaming method for the cloud storage and visualization services in IEC 61499 
applications. The approach is based on LEAP (La Trobe Energy Analytics Platform). LEAP is a cloud 
platform oriented toward analysts and monitoring of energy data. The method was applied to a 
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building management system (BMS). BMS is a testbed for the simulation of a smart house systems 
behavior, managed with IEC 61499 distributed application. BMS wall is equipped with illumination and 
proximity sensors, curtains, lamps and smart electric meters. 

 
Figure 19: BMS wall 

The structure of the controlled network is shown on Figure 19 IEC 61499 application deployed into 
four control devices controls BMS wall. The gateway device re-transmits data received from an 
IEC61499-compliant device to the Cloud in HTTP format. The visualization device is a computer. It 
visualizes the data of interest. 

 
Figure 20: controlled network structure 

Let's take a look at the BMS wall control application. Suppose the active power measured by the smart 
meter is of interest to be observed through an external web-based visualization application. The 
application is extended with NETIO function block. NETIO communicates the data assigned to its 
parameter SD over the network. The parameter ENDPOINT is address of the receiving party. ANY2ANY 
block converts data of interest and assigns in to the input SD of the NETIO. The gateway receives the 
measurement data in STRING format using a UDP socket and sends messages to the LEAP. The gateway 
receives the measurement data in STRING format using a UDP socket and sends messages to the LEAP 
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in the format.  LEAP aggregates disparate data sources through its data lake and lata the data can be 
processed by the analytic engine. 

 
Figure 21: BMS wall control application 

5 Conclusions 
Intelligent agents deployed within the Edge-Cloud continuum offer a strategic advantage such as: 

● Reduced data transfer latency.  
● Distributing intelligence across the Edge-Cloud continuum optimizes network bandwidth 

usage. Data preprocessing and data analysis can be performed at the Edge, reducing the 
amount of data transmitted to the Cloud; 

● Privacy and Security Enhancement (critical information stays within the premises, minimizing 
exposure to risks)  

● Effective distribution of intelligent agents optimizing computational capacity. 

We have seen that challenges are also present, such as: 

● Algorithm Selection and Deployment; 
● Enabling asynchronous learning involves continuous model updates in response to changing 

data streams, operational conditions, and evolving patterns.  
● Coordinating data synchronization and maintaining consistency across distributed intelligent 

agents can be complex. 
● Seamless communication between Edge devices and the Cloud is vital for timely data exchange 

and decision-making.   

Achieving the full potential of this paradigm necessitates meticulous balancing of these aspects. The 
appropriate technology layers and a robust architecture represent a core enabler for performance 
standardization of the development and delivery of applications. In this direction, we have seen how 
Kafka, MQTT, OPC-UA, and the IEC 61499 environment provide a possible robust and standard 
framework. 

In conclusion, the Zero-SWARM platform serves as a disruptive innovation in the manufacturing sector. 
It presents an opportunity to deliver a competitive, scalable, and future-proof product that integrates 
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seamlessly across systems. It offers a pathway to operational excellence by enabling real-time 
decision-making, reducing costs, and mitigating risks. It favors design and development 
standardization. 

Advanced features like Multi-Layered Adaptivity, the possibility to distribute intelligent agents and 
learning processes, and the metamodeling concepts introduced in D4.3 contribute to the platform's 
uniqueness and relevance, solidifying its potential as a transformative force in modern manufacturing.  
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