ZEROSWARM

ZERO-enabling Smart networked control framework for Agile cyber
physical production systems of systems

D4.1 - Digital twin configuration, edge Al and deep learning v1

Project funded by Horizon Europe, Grant Agreement #101057083

ZEROSWARM

Topic
Project Title

Project Number
Project Acronym
Deliverable No/Title

Contractual Delivery Date

Actual Delivery Date
Contributing WP

Project Start Date, Duration

Dissemination Level
Nature of Deliverable

HORIZON-CL4-2021-TWIN-TRANSITION-01-08
ZERO-enabling Smart networked control framework for Agile

cyber physical production systems of systems

101057083
Zero-SWARM

D4.1 — Digital twin configuration, edge Al and deep learning v1

M13
M13

WP4 — Runtime information continuum enabling awareness in

the industrial domain
01/06/2022, 30 Months
Public (PU)

Document, report (R)

Document History

Date Version Author Description
30-03-2023 0.1 Rober(ltqo”\F”eErll\v/;Jndez Deliverable structure preparation
Roi Méndez-Rial _
26-06-2023 0.2 First complete draft
(AIMEN)
Roi Méndez-Rial])
28-06-2023 0.3 Address internal review comments
(AIMEN)
30-06-2023 1.0 Anastasios Drosou (CERTH) Final submission
Authors List
Leading Author (Editor)
Surname Initials Beneficiary Contact email
Name
Méndez-Rial RM AIMEN roi.mendez@aimen.es
Co-authors (in alphabetic order)
Surname Initials Beneficiary Contact email
Name
1 Alonso LA AIMEN lucia.alonso@aimen.es

Project funded by Horizon Europe, Grant Agreement #101057083

mailto:roi.mendez@aimen.es
mailto:lucia.alonso@aimen.es

ZEROSWARM

Contributors (in alphabetic order)

Surname Initials Beneficiary Name Contact email
1 Abadia AA AIM antonio.abadia@aimen.es
2 Barja LB AlM lara.barja@aimen.es
3 Gil IG AlM lago.gil@aimen.es

Reviewers List
List of Reviewers (in alphabetic order)

Surname Initials Beneficiary Name Contact email
1 Khodashenas PSK HWE pouria.khodashenas@huawei.com
2 Mpatziakas AM CERTH ampatziakas@iti.qgr
3 Drosou AD CERTH drosou@iti.gr

Project funded by Horizon Europe, Grant Agreement #101057083

mailto:lara.barja@aimen.es
mailto:Iago.gil@aimen.es
mailto:pouria.khodashenas@huawei.com
mailto:ampatziakas@iti.gr
mailto:drosou@iti.gr

ZEROSWARM

DISCLAIMER OF WARRANTIES

This document has been prepared by Zero-SWARM project partners as an account of work carried out
within the framework of the contract no 101057083.

Neither Project Coordinator, nor any signatory party of Zero-SWARM Project Consortium Agreement,
nor any person acting on behalf of any of them:

e makes any warranty or representation whatsoever, express or implied,

o with respect to the use of any information, apparatus, method, process, or similar item
disclosed in this document, including merchantability and fitness for a particular
purpose, or

o that such use does not infringe on or interfere with privately owned rights, including
any party's intellectual property, or

e that this document is suitable to any particular user's circumstance; or

e assumes responsibility for any damages or other liability whatsoever (including any
consequential damages, even if Project Coordinator or any representative of a signatory party
of the Zero-SWARM Project Consortium Agreement, has been advised of the possibility of such
damages) resulting from your selection or use of this document or any information, apparatus,
method, process, or similar item disclosed in this document.

Zero-SWARM has received funding from the European Union’s Horizon Europe research and
innovation programme under grant agreement No 101057083. The content of this deliverable does
not reflect the official opinion of the European Union. Responsibility for the information and views
expressed in the deliverable lies entirely with the author(s).

Project funded by Horizon Europe, Grant Agreement #101057083 4

ZEROSWARM

Table of Contents

List of Figures
List of Abbreviation
Executive Summary
1 Introduction
1.1 Purpose of the document
1.2 Connection with other work packages
2 Digital Twinsin 14.0
21 RAMI4.0
2.2 Asset Administration Shell
2.3 AAS, AutomationML and OPC-UA
3 Open-source tools
31 AAS Tools
3.1.1 AASX Server
3.1.2 NOVAAS
3.1.3 Eclipse BaSyx
3.14 FA3ST
3.2 Middleware
3.2.1 Apache Kafka
3.2.2 Redis
3.2.3 EDGE X Foundry
3.3 Edge Al
3.3.1 Gstreamer
3.3.2 ONNX Runtime
3.3.3 NVIDIA TensorRT
3.4 Discussion
4 Open Toolkit for implementing AAS
41 AAS modelling tool
4.2 Framework for developing edge digital twins with Al
4.3 AAS implementation workflow
5 AASimplementation examples
6 Conclusion

7 References

Project funded by Horizon Europe, Grant Agreement #101057083

O OV O 00 N O O

10
11
14
16
16
16
17
17
17
17
18
18
19
19
19
20
20
20
21
21
22
25
26
28
29

ZEROSWARM

List of Figures

Figure 1 Reference Architecture Model for Industry 4.0 (RAMI 4.0)ccoeiiriinieinienienie ettt 10
Figure 2 Classification of @ Digital TWiNcoiiiiiiiii ettt ettt e snee e 11
Figure 3 Layers axis OFf RAIMI 4.0oiiiiiiieiiiteiteett ettt ettt et s et e sbe e e bt e sbtesbe e e bt e sabe e e sbee s beesneesabeeenneesane 11
Figure 4 14.0 component represented by an Asset Administration Shell............ccoccoiiiiiiie e, 12
Figure 5 Asset Administration Shell structure defined in [EC 632781ccccccveeeeiiiiecciiee e e s 13
Figure 6 Types of information EXChange Via AASoii ittt e e et e e s ear e e e sta e e e esseae e senaaeeesnnaeeeans 14
Figure 7 Open Standards in RAMI4.0 (figure from [8]). ..icccuiie ittt tre e e s areeeeas 15
Figure 8 Composition of an AAS from a base model and submodels for engineering an operation. 15
Figure 9 AASX Package EXplorer USer iNTErfatecuiiiiiiiiiiiiieeiet ettt 16
Figure 10 Kafka architecture for stream processing on the edge.coccuiiiieiiiiiiiiniiii e 18
Figure 11 Redis diagram used for real-time analysis and representation of video streams on the edge............. 19
Figure 12 Edge computing devices integrating Nvidia Jetson System-on-Chip with ARM/GPU and Raspberry... 23
Figure 13 Simple example of a processing pipeline with OPC-UA embedded interface.........c.ccceeevveeieciieeesnneennn. 23
Figure 14 UAExpert GUI showing OPC-UA server structure of the edge computing pipeline.cccceeeevnnenn. 24
Figure 15 AAS PropoSed SEIUCTUIEeiiuiiiiiieiiii ettt et eb e sbe e s b e sbe e s bt e s bt e s be e e sbee s beeesaeesbeeenneenane 25
Figure 16 Robotized Additive Manufacturing Celloouiiiiiiiiiiiiee et 26
Figure 17 Example of a processing pipeline for implementing an AAS of the complete AM Cell.ccccveeueennne 27
Figure 18 AAS instance of the AM cell with embedded OPC-UA Server APl.........cccoieienierieieneennieesee e 27
Figure 19 AAS instance of the AM CEell ON @ SEIVEIuii i e e e st e e e ste e e e e aae e e saaeeeens 28

List of Abbreviation

Abbreviation Description

AM Additive Manufacturing

Al Artificial Intelligence

AAS Asset Administration Shell

AML Automation Markup Language

DT Digital Twin

14.0 Industry 4.0

loT Internet of things

OPC-UA Open Platform Communications — Unified Architecture
RAMI4.0 Reference Architecture Model for Industry 4.0

Project funded by Horizon Europe, Grant Agreement #101057083 6

ZEROSWARM

Executive Summary

This deliverable reports the first outcomes of the Task 4.1 “Digital twin configuration, edge Aland deep
learning”. The digital twin concept is essential for enabling interoperability in Industry 4.0, creating a
digital representation of physical systems that communicate with their environments to collect,
analyze, and simulate data. The Asset Administration Shell (AAS) is the implementation of the digital
twin for Industry 4.0. The aim of this task is to provide a comprehensive methodology and open toolkit
for implementing Asset Administration Shell (AAS) with embedded Al capabilities on the edge and a
set of open-source tools for supporting their implementations. The deliverable provides a review of
current challenges and trends associated to the development of AAS and a summary of current open-
source software solutions supporting these implementations. Based on a technology gap analysis, the
design principles of the Zeros-Swarm AAS toolkit, which includes an AAS modelling tool and an edge
computing framework, is described together with an example application in one of the project trials.

Project funded by Horizon Europe, Grant Agreement #101057083 7

ZEROSWARM

1 Introduction

The adoption of Industry 4.0 requires interoperability so that components, devices and applications
can communicate seamlessly across companies, industries and countries. In this context the concept
of Digital Twin is becoming essential, which is related to the creation of a digital representation of the
physical systems that communicate with their environments in various ways to collect, analyze, and
simulate data in the digital world and improve the performance of the physical systems.

A digital twin can be defined as a formal digital representation of an entity, with attributes and
optionally computational, geometrical, visualization and other models, offering a service interface for
interacting with it, adequate for communication, storage, interpretation, process and analysis of data
pertaining to the entity in order to monitor and predict its states and behaviors within a certain context
[[1]]. The content of the digital representation is determined by the set of use cases for which digital
twin is designed. The level of abstraction and complexity of a digital twin must be such that it is
sufficient to meet the requirements of the use cases for which the digital twin is designed.

The industrial systems and the industrial usage scenarios are complex and diverse, therefore, their
requirements on digital twin are naturally complex and diverse as well, leading to different flavors of
digital twin implementations [[1]]. Some implementations of digital twin may contain many attributes
and data, computational capabilities and perhaps even a formal interface for communication to satisfy
the application requirements, some others may only need a small set of attributes and data to be
sufficient to support their application. Generally, a digital twin consists of three elementary aspects,
namely, data, models and service interfaces.

The complexity behind the digital twin is translated in to the amalgama of technologies that are
required to implement the concept, addressing challenging technical aspects as: information
modelling, interoperability, data management and aggregation, real-time synchronization, scalability
or security. The use of open standards and open-source software is crucial for the digitalization of
manufacturing, including the implementation of Digital Twins [[2]].

The Asset Administration Shell (AAS) is described as the implementation of a digital twin for Industry
4.0. The AAS is the digital representation of a physical asset, enabling it to interoperate with other
assets and systems. The AAS together with the asset constitute an Industry 4.0 component. AAS
provides the basis for the development and use of unified and open Industry 4.0 standards enabling
interoperability as one of the strategic fields. A series of specifications have been published to help
developers to implement AAS since the introduction of the term in the reference architecture model
for Industry 4.0 (RAMI4.0). To name few, [[3]], [[4]], [[5]], [[6]].

The AAS specification is still a work in progress, and therefore the implementation is still challenging.
There are already several open-source frameworks available supporting developers to work with Asset
Administration Shells. However, existing tools do not implement the complete specification and only
facilitate the modelling or implementation of certain types of AAS. Most solutions are focused on
cloud-based digital twins with limited embedded processing capabilities and do not support properly
the synchronization of the AAS with the asset.

Zero-SWARM aim to provide a comprehensive methodology and an open Toolkit to support the
development and implementation of AAS of manufacturing assets in the operation phase with
integrated Al and near real-time processing capabilities. The main application of the framework will be
on AAS that can be deployed in field devices or embedded devices which operate close to the machines
where the data is generated. The goal is to transform assets into standalone intelligent digital twins
that can operate in a decentralized yet coordinated manner. Many industry solutions will require

Project funded by Horizon Europe, Grant Agreement #101057083 8

ZEROSWARM

digital twins with near real-time data and event processing capabilities, for instance exploiting edge
devices endowed with 5G connectivity for distributed control or autonomous systems.

1.1 Purpose of the document

This deliverable shows the first results of task T4.1 “Digital twin configuration, edge Al and deep
learning” which aims to deliver a comprehensive methodology and an open toolkit to support the
development of edge digital twins based on AAS with embedded Al capabilities. The toolkit will include
a novel open-source AAS modeling tool and a framework/SDK for implementing digital twins and make
them deployable on heterogeneous Linux-based embedded hardware platforms. A second version of
this report will be delivered at the end of the task with the final outcomes. Section 2 introduces the
challenges associated to the development of digital twins in 14.0 based on AAS. Section 3 provides an
overview of current AAS open tools and open-source software solutions that can be used for their
implementation. Section 4 describes the main innovation to be delivered by Zero-SWARM, i.e., the
AAS Open Toolkit, explaining the overall methodology for AAS implementation and the design
principles of the software tools. Section 5 shows an example of a practical implementation of an AAS
for one of the trials using the toolkit.

1.2 Connection with other work packages

This task is related to the following work packages:

e WP2:The overall zero-swarm architecture and the trials requirements are defined in WP2. The
implementation of the digital twins will support mainly the Data Aggregation and Processing
functional blocks and partially the Automation Application Layer in the reference architecture.
WP2 provides information about the trials and the assets involved (machines, robots, etc..) for
which AAS will be developed.

e WP3: WP3 aims to model 5G technology with AAS. WP3 and WP4 are collaborating and
sharing knowledge about modelling with AAS. WP3 will provide 5G edge infrastructure upon
which the interoperability test of the AAS will be performed.

e WP4: The digital twins will leverage and provide compatible interfaces with the data streaming
technologies from edge to cloud (T4.2), and MLOps cloud services for ML/DL model
development and deployment back on the edge (T4.4.).

e WP5: On-going discussion regarding the feasibility and interest of modelling IEC 61499
applications with AAS or OPC-UA information models. Synergies for integration approaches of
Al models in the edge.

e WP6: T4.1 will support the implementation of AAS for the different trials in WP6.

2 Digital Twins in 14.0

Interoperability refers to the ability of different devices, systems, and technologies to communicate
and work together seamlessly, enabling the free flow of data and information across the entire value
chain. Its effective implementation will be crucial to unlocking the full potential of 14.0. The goal is to
have industrial assets (components, systems) providing universal and cross-manufacturing
communication standards that can be easily integrated into smart factories through plug & play, similar
to the way USB devices are easily connected to computers. This requires a big effort in the
development of integration software for assets and systems and complex digital models, defining
communication structures and a common language.

The Digital Twin (DT) concept is one of the cornerstone technologies to solve the interoperability
problem by combining isolated data in a semantically consistent manner ensuring that users have an

Project funded by Horizon Europe, Grant Agreement #101057083 9

) ZEROSWARM

integrated, unified view of the data and information. Different types of DT, standards and
specifications are being proposed [[7]]. DT should not be proprietary solutions, as it becomes hard to
maintains its sustainable in the long term, instead it should be based on open standards.

In this context, Industry 4.0 platform through RAMI4.0 intend to make sure that all participants
involved in 14.0 discussions and activities have a common framework to understand each other. The
RAMI 4.0 framework is intended to enable open standards and address the interoperability issue in a
structured manner. This model is complemented by the industry 4.0 components. The AAS
specification is the concrete adaptation of the generic Digital Twin concept to industrial applications,
and the only available industrial DT open standard.

2.1 RAMI4.0

The Reference Architecture Model for Industry 4.0 (RAMI 4.0) is a service-oriented architecture
independent of vendors, products, and technologies, which consists of a three-dimensional map.
These tree axes describe all crucial aspects of Industry 4.0 using a common perspective. In this way,
complex interrelations are broken down into smaller and simpler clusters.

Layers e i vl

Business

Figure 1: Reference Architecture Model for Industry 4.0 (RAMI 4.0)

The three axis that composes the RAMI 4.0 are:

e The horizontal "Hierarchy Levels” axis of IEC 62264, which is the international standards series
for enterprise IT and control systems. This axis represents the different functionalities within
factories or facilities.

e The horizontal "Life Cycle Value Stream" axis, which represents the life cycle, from the
development to disposal, of facilities and products. It is based on IEC 62890, Life-cycle
management for systems and products, used in industrial-process measurement, control, and
automation.

e The vertical "Layers" axis that describes the decomposition of a machine into its properties,
structured layer by layer (the virtual mapping of a machine). This type of representation has
its origin in information and communication technology where the properties of complex
systems are decomposed into layers.

Within these three axes, all crucial aspects of Industry 4.0 can be mapped, even the more highly flexible
concepts, allowing objects such as machines to be classified according to the model.

Project funded by Horizon Europe, Grant Agreement #101057083 10

ZEROSWARM

2.2 Asset Administration Shell

An Industry 4.0 component is composed by an asset, which is defined as a physical, digital or intangible
entity that has value to an individual or an organization, and the information which describes it through
digital models, i.e., its digital twin. The AAS is the representation of the digital twin in the 14.0, enabling
the use of assets in its digital form. This model has been selected to be used in 14.0 due its high degree
of maturity to map the asset information across its entire lifecycle.

Lifecycle phases 4',\°°
& r & & &&
"’\% .\b Q,o \0\ ‘Oe &
i & Q‘)\ R @’b R o

= » o o
& N R o
T 6 Sineen S i —g

& 6. Orchestrate DA

5. Extract =17 L=/

& 4. Emulate

&€ 3. simulate
5% 2. Visualize

\&o 1. Digitize

9

6. Multi-system
5. System
4. Process

3. Product

Hierarchical levels

2. Component

1. Informational

Figure 2: Classification of a Digital Twin

An asset can have several AAS or digital twins, as it is represented in the Figure 2: Classification of a
Digital Twin, in function of the hierarchical level where the Digital Twin is applied, the common use of
it and the lifecycle phase in which it is used. Therefore, same asset can be represented by completely
different Digital Twins in function of what they are representing.

Using RAMI 4.0, a digital twin can represent it in the system through the hierarchical level and its
LifeCycle phase, with the digital use as the most common. Finally, the architecture layers represent the
properties of the 14.0 component, composed by the digital twin and asset.

14.0 components RAMI 4.0
14.0 communication Architecture layers
Administration

Digital world

| g machio]

= 2 I
-&Q ! s AN

* Also refers to individual components such as sensors, actuators, controllers, software etc

Real

Figure 3: Layers axis of RAMI 4.0

Project funded by Horizon Europe, Grant Agreement #101057083 11

ZEROSWARM

The composition of the 14.0 component is shown in Figure 3, where the architecture layers can be
differentiated in what are representing: the asset in the real world or the digital twin (Asset
Administration Shell) in the digital world.

Asset layer: it represents the physical world, the asset itself.

Integration layer: it represents the connection between the physical and digital world, giving
the capability to monitor and control the asset from a digital entity.

Communication layer: it provides access to information through different protocols (as OPC
UA, MQTT, etc.), giving standard communication to the information layer and services to the
integration layer. Underlying networking technology which is responsible to provide the
connectivity for information exchange between the mentioned protocols (OPC UA, MQTT, etc.)
in the Zero-SWARM scope is the cellular communication system, i.e. 5G and beyond. Please
note that there are alternative solutions available too such as legacy wired solutions (property
— e.g. PROFINET or standard — e.g. Ethernet LAN) or even wireless solutions such as WiFi.

Information layer: it describes the necessary data of the asset represented in information
models (as AAS, AutomationML, OPC UA datamodel, etc.), i.e., the services and data that are
offered, used, generated, or modified by the logical functions of the asset.

Functional layer: it describes the logical functions of the asset in function of the role of it in the
system.

Business layer: it orchestrates functions to business processes and links them under the legal
and regulatory constraints.

The Asset Administration Shell is standardized in IEC 63278-1 as a digital representation of an asset,
where the asset is defined as a physical, digital or intangible entity with value to an individual or an
organization. Therefore, an asset is identified as an entity in a specific state of its life, providing all the
technical functionality and communication ability contained by it. The metamodel is the generic
technology-neutral manufacturer-independent standardized interface used to implement the AAS.
Using the metamodel, the information of the asset can be managed and structured in submodels,
which are the aspects’ representation of the asset.

functionality of AAS exposed by
an application programming
interface (API)

entirety of information
of AAS

communication

ability of asset IS DOMRONRNY

ADMINISTRATION SHELL
type/ instance (LOGICAL REPRESENTATION)

of asset
P N
Asset as uniquely 9 J L

identified entity ASSET
(PHYSICAL WORLD)

Figure 4:14.0 component represented by an Asset Administration Shell

Project funded by Horizon Europe, Grant Agreement #101057083 12

ZEROSWARM

Asset Administration Shell

!/'sfsl lprow'd es

Submodel template(s)

(including Submodel template | guides Submadel(s uses . accesses o
elements) *’limudingSuhmdelgls)mem) +«——— AASinterface(s) <————| AAS user application(s)

(optional)

| references

l references

references
references

concept repositories

asset integration
(optional)

associated

AAS responsible

creates and governs

integrates

asset related service(s)
asset service(s) i
has interest in (optional) (optional)

T provides

asset

IEC

Figure 5: Asset Administration Shell structure defined in IEC 63278-1

The Asset Administration Shell is associated with a unique asset and organizes its information in a list
of submodels, enabling to manage complex information. Each submodel is the representation of an
aspect of an asset and it is used to structure the digital representation and technical functionality in a
set of submodel elements, which can be properties, references, relationships, operations, etc.

The submodels can be standardized as templates, which are essential for interoperability. Industrial
Digital Twin Association (IDTA) works in submodel standardization and provides a list of potential
common submodels like Identification, TechnicalData, ConfigurationData or OperationalData.
However, most submodels in the AAS that describe specifics functionalities of the asset cannot be
standardized and their implementation will depend on the granularity of the model, abstraction level
and use case.

Even the AAS is implemented using the metamodel, which is technology-neutral, the AAS can be
instantiated using different formats to enable the exchange of information between industrial
applications. This instantiation can be made using common industrial protocols like JSON, OPC UA
data model or AML.

Asset Administration Shells can be classified in three types based on the way they exchange
information:

e AAS Type 1: passive AAS as a file providing only static data . Type 1 are serialized in files such
as XML, JSON, following the AAS metamodel. For instance, product catalog of directly provided
by vendors.

e AAS Type 2: active AAS with a software abstraction layer implementing an API to access the
information. Runtime instances containing both static and motion data. Type 2 provides
properties and operations and is able to signal changing conditions with events. The data
model is defined by the AAS meta model, with a generic runtime interface that enables
accessing properties, operations, and events. The implementation of the AAS APl can be done
in HTTP, OPC-UA or MQTT according to the AAS specification. An AAS server application with
HTTP/REST or OPC UA API is called reactive AAS.

e AAS Type 3: proactive interaction between AAS using Industrie 4.0 language. Type 3 extend
type 2 with active behavior. They can start to communicate and to negotiate on their own.
VDI/VDE 2139 defines a language for type 3 AAS. The AAS 140 language specifies interaction
patterns and submodels, which communicate proactively by the defined interfaces via
http/REST, OPC UA or MQTT. An AAS Server Application with a corresponding interface for the
140 language is at the same time a client and a server and is a so called proactive AAS.

Project funded by Horizon Europe, Grant Agreement #101057083 13

ZEROSWARM

1

file exchange API

© Plattform Industrie 4.0

Figure 6: Types of information Exchange via AAS

AAS type Il or type lll run on top of the physical device making the machines interoperable. The AAS is
a common information point for data about the asset offering key innovations such as: searchable on
the internet, explorable, data integration across the lifecycle, generic concept across vendors.

2.3 AAS, AutomationML and OPC-UA

Industry 4.0 platform recommend the use of AAS, OPC-UA with its associated information models, and
AutomationML, as key technologies offering comprehensive concepts for unified digital
interoperability between 14.0 components (e.g., machines and systems) through their life-cycle. These
technologies are promoted by different industrial associations, looking for open standards, common
digital object models, and harmonization of solutions. AAS, OPC-UA and AML follow the same concept,
aiming to develop object models templates and instance creation.

At the same time, this recommendation create confusion in the industrial domain since these
technologies seem to overlap with each other and duplicate development efforts, e.g., double
modelling, double standardization. To moderate and avoid frustration industry need consensus and
comprehensive guidelines. Recently, a group of industrial associations AutomationML eV, IDTA, OPC
Foundation, and VDMA have joint efforts to provide a common understanding and deliver a common
message on how to use and combine AAS, OPC-UA and AutomationML, delivering the big picture of
interoperability. The original discussion paper can be found in german language [[9]]. This section
summarizes the first findings and orientations.

AutomationML is an XML based object-oriented modelling language and a data format at the same
time to store and exchange information. It allows the modelling, storage and exchange of engineering
models covering multitude of relevant aspects of engineering (CAD, electrical planning, mechanical
planning, simulation, PLC programming). There is no software stack behind AML do not provide any
functionality. OPC-UA can provide the communication layer for rump-up the AutomationML object
model information exchange. AML is mainly use in engineering.

OPC-UA is a platform independent open standard (IEC62541) for industrial communication and data
exchange. It defines an object-oriented data model and a flexible communication protocol for

Project funded by Horizon Europe, Grant Agreement #101057083 14

1 ZEROSWARM

industrial automation. It provides a software framework with key features enabling access to operative
data, live data, historical, built-in security features, and is extensible to field and cloud communication.
OPC-UA is mainly use in operation.

AAS is object metamodel for data exchange. AASs run usually in the cloud, not on the shopfloor, and
are focused on lifecycle spanning information. There are different working groups (e.g., IDTA)
developing submodels of several aspects of an assets. AAS usually do not provide real-time data as
OPC-UA or detail engineering data as AML provides. The aim of the AAS is to help people to find the
information they need about an asset throughout its lifecycle. Not all the detail information has to be
modelled in the AAS, only what is required for the use case.

The interaction of these technologies AAS, OPC UA and AutomationML becomes clearer when they are
mapped to RAMI4.0. The x-axis describes the life cycle of the assets, the y-axis describes the
communication content of the assets, and the z-axis describes the hierarchy levels of the networks
according to "ISA95" (see Figure 7), in which asset data is communicated.

i

Application-specific

Information Model . ,OPF_UA

Data Exchange Format/

Payload UA Binary & X"/l & JSON & RDF

Concept Description

OPC UA Work Center
(via TCP/UDP/MQTT)
Control Device ,/ISA95
Field Device
Product

Communication

Product-specific

Figure 7: Open Standards in RAMI4.0 (figure from [[9]]).

The key message from [[9]] is to avoid double modelling and use the appropriate technology for each
phase in the lifecycle. Use AAS for exchanging data across the lifecycle, OPC-UA for operational data
(access to live data of devices, plant, applications), AML for exchanging engineering information.
Before modelling check with domain experts and the respective organisations (e.g., IDTA, OPC,
AutomationML, VDMA) what is already there and reuse what is existing.

Asset Administration Shell

AASX

Submodel ‘
Nameplate .‘l.
Identification g —r—,

Figure 8: Composition of an AAS from a base model and submodels for engineering an operation (from [[9]]).

Project funded by Horizon Europe, Grant Agreement #101057083 15

ZEROSWARM

The AAS assumes here a predominantly organizing and aggregating role. The AAS can store static and
dynamic data. The production information can be fed into the AAS via OPC UA in a certain interval.
However, the most sustainable approach for implementing the AAS seems to be a hybrid mix of
technology formats, having AAS submodels to describe how to access OPC-UA data (e.g., referencing
an OPC-UA nodeset file), and other submodels to offer and access point for AutomationML models.

3 Open-source tools

In Zero-SWARM we aim to develop edge digital twins with Al capabilities and provide the necessary
open-source software for enabling their implementation. Open-source software is recognized as a
decisive factor for implementing 14.0 successfully [[10]]. In this section we briefly review relevant
existing open-source software that can be utilized for this implementation. We group the technology
in three blocks: AAS tools — most prominent AAS ecosystems for modelling and development -,
Middleware — that may facilitate to address the integration layer in RAMI4.0, i.e., the synchronization
of the assets with the AAS API -, Edge Al — software tools that could be used to embed Al and ML/ DL
models in the edge digital twins-.

3.1 AAS Tools

3.1.1 AASX Server

The AASX Server [[11]] is being developed in the context of IDTA. The main package is the AASX
Package Explorer, a software tool with a graphical user interface to view and edit Asset Administration
Shell. Through its graphical interface, it is aimed at both tech-savvy and less technical users to develop
and demonstrate the use of Asset Administration Shell standard.

P AASK Package Explorer s -

— [
options Help (4] [@ arvatn ravaress . IINDUSTRIE4.0
P

il | Content

File Workspace

FYX Robot™ [Custom, aimen atl robot] of [Custom, aimen atl robot asset, Instance] e

1 [E7) "\dentification” [Custom, aimer Asset Administration Shell

n_atl_robat identification]

Submodel element

Submodel element

|ETT) “VechnicalData™ [Custom, aimen_atl_robot_technicaldata]
|E7] “Capabilities™ [Custom, simen atl robat capabilities]
|EE7] “Process [Custom, aimen at| robat process]

7] “Communicate” [Custom, simen atl robot communicate]

Referable:
itlshort [
descriptan fenltanuc rabet atl cal

HasDataSpecification (Reference):

[ETT) “Configurationtthernet (Custom, simen atl robot configurstion sthemet]

i [ET) "OperationalData™ [Custom, aimen atl robot operationaldata]

1 [T "Parameters™ [Custom, aimen atl robot parameters]

Custam

dType:
id: aiman atl rabot

Asset Referance.
sl ik

{Asset) (local) [Custom)] simen_atl_rabol_asse

Jump.
e —

Referable:

idShort Robot

tlessiption L] Fare: ruabest =l e
[es] tubet - celda atl

HasDataSpecification (Reference):

Identifiable:
idType: Custam
il simern_allsoho_sacl

Kind (of Assat):
ke Instance,

Mo ermors | |Clear |Report .

Figure 9: AASX Package Explorer user interface

Using the AASX Package Explorer, the AAS can be instantiated in different formats like JSON, XML,
AutomationML or nodeset.xml to use in a OPC UA server, but the main format used to save the AAS
instances are AASX files. With those format files, the assets can be registered and be used in
Compliance with the IEC 63278-1 standard.

The AASX server includes a C# client library, the model editor, a registry service and visualization. AASX
does not claim to provide an AAS-compliant REST API. The APl supports the operations of reading data
but not the ones related to creating, updating, or deleting elements. It supports HTTP and OPC UA as
APl implementations. Main drawback is that AASX Server provides limited support for asset
synchronization.

Project funded by Horizon Europe, Grant Agreement #101057083 16

ZEROSWARM

3.1.2 NOVAAS

The NOVA Asset Administration Shell (NOVAAS) is an open-source reference implementation and
execution environment for AAS designed with the AASX package explorer and developed by NOVA
School of Science and Technology [[12]]. It follows a low-programming paradigm using Node-RED and
Node.js. It was designed to be cloud native. It provides the back-end, front-end and web-based GUI for
creating dashboards. The ecosystem does not include a client library, model editor, model validation
or registry. The asset synchronization is based on Node-RED offering the possibility to add predefined
extension points in the flow to synchronize assets via the read interaction pattern with HTTP and OPC
UA.

3.1.3 Eclipse BaSyx

Eclipse BaSyx [[13]] provides a complete ecosystem for implementing AAS type |, Il, including AAS
server, AAS Registry, AAS Web client, and an SDK available in Java, C# and C++. Main contributor is
Fraunhofer IESE. It provides different ways to address the synchronization with the asset: custom
coding using a component called DataBridge — a service external to the AAS Service that can send data
through HTTP -, or via a mechanism called property/operation delegation that allows to read property
values and executing operations via HTTP.

Eclipse AAS Model for Java implements the specification of the Asset Administration Shell (AAS) such
as metamodels, submodels, serialization and deserialization modules, validators, and transformation
libraries based on the AAS specifications.

The Eclipse AAS Model for Java projects are focusing on the following features / functionalities:

e AAS Java Generator: The Java Generator automatically updates AAS Java Model classes and
interfaces upon change in the specification documents.

e AAS Java Model: The AAS Java Model enables users to model and to represent their Digital
Twins using AAS metamodels and submodels.

e AAS Java Serializer: The AAS Java Serializer enables users to serialize the AAS model into JSON,
RDF, XML, AASX, OPC UA, AutomationML. This feature is necessary to support the
import/export of AAS from/to these formats and validate them.

e AAS Transformation Library: The AAS Transformation Library brings the content from existing
industry-standards such as OPC UA and AutomationML to the AAS.

3.1.4 FA3ST

FA3ST is a Java-based software ecosystem used to create and manage 14.0-compliant, hybrid and data
sovereign digital twins. It is developed and maintained by Fraunhofer I0SB [[14]]. Main features are:
ensure the usage of the latest AAS specifications, easily extendible configuration, provides support for
hybrid models, can be used with or without IDS. It can integrate Apache StreamPipes as external
runtime services for adding stream processing capabilities to the AAS. It provides tools for AAS
visualization and management, registry, client, OPC UA Crawler form mapping information models and
ASS configurator.

3.2 Middleware

An loT middleware is software that serves as a bridge between loT devices and the applications that
use them. Its primary purpose is to provide a standardized way to connect and manage loT devices.
loT middleware typically includes features such as device management, data acquisition and
processing, security, and integration with other systems. By providing a unified interface for interacting
with loT devices, middleware simplifies the development process and enables developers to focus on
creating innovative applications that leverage the unique capabilities of loT devices.

Project funded by Horizon Europe, Grant Agreement #101057083 17

ZEROSWARM

3.2.1 Apache Kafka

Apache Kafka is an open-source distributed event-streaming platform that can publish, subscribe,
store and process log streams in “(soft) real-time” [[15]]. It is designed to handle data streams from
multiple sources and deliver them to multiple consumers. Kafka is highly scalable, handling millions of
data points per second, which makes it well suited for the Internet of Things (loT), where data can
grow exponentially. Because of these functionalities, this technology is used by most of the largest
manufacturing companies.

Kafka can be used as edge combining data integration (Kafka connect), data processing (Kafka streams,
KSQL), data storage (Kafka core) and ease of integration with artificial intelligence system framework
in a single system Figure 10: Kafka architecture for stream processing.

/" CcLOUD
[1 ;
L KAFKA |
/" FACTORY
KAFKA - STREAMS |<«——— KAEKA ‘
/ KSQL | L
— -
e]<—=|KkAFKA COI\INECT‘
e] g)

oo

NMQTT “=5PC UA

Figure 10: Kafka architecture for stream processing on the edge.

3.2.2 Redis

Redis, stands for Remote Dictionary Server, is a fast, open source, in-memory, key-value data store
[[16]]. It is mainly used as a database, cache, message broker, or queue. It runs in-memory, which
enables low-latency and high throughput with sub-millisecond queries. Redis also provides advanced
features and modules that extend its capabilities in edge environments such as:

e RedisGears — a programmable engine for Redis that runs inside Redis, closer to where your
data lives, and which allows cluster-wide operations across shards, nodes, data structures, and
data models at a sub-millisecond speed.

e RedisAl — a machine learning data type that runs inside Redis and allows you to train and
predict on your data. Additionally provides a common layer among different formats and
platforms, including PyTorch, TensorFlow/TensorRT, and ONNX Runtime.

e RedisTimeSeries — a time series data type with capabilities like automatic downsampling,
aggregations, labeling and search, compression, and enhanced multi-range queries as well as
built-in connectors to popular monitoring tools like Prometheus and Grafana to enable the
extraction of data into useful formats for visualization and monitoring.

Figure 11: Redis diagram used for real-time analysis and representation of video streams on
the edge shows an example of Redis used for real-time video analytics. Redis has partnered with the
emerging leaders in the loT edge platform space, EdgeX Foundry and Microsoft Azure loT Edge, to
bring RedisEdge to their users.

Project funded by Horizon Europe, Grant Agreement #101057083 18

ZEROSWARM

Input video Redis RedisGears RedisAl

Video server Grafana Prometheus RedisTimeSeries

Figure 11: Redis diagram used for real-time analysis and representation of video streams on the edge.
3.2.3 EDGE X Foundry

EdgeX is a common open framework for loT edge computing providing an ecosystem of interoperable
components to accelerate time to market and facilitate scaling [[17]]. It is managed by the Linux
Foundation.

The objectives of the EdgeX Foundry are:

e Build and promote EdgeX as the common open platform that unifies Internet of Things (loT)
edge computing.

e Enable and encourage the growing community of loT solution providers to create an
ecosystem of interoperable plug-and-play components around the EdgeX platform
architecture.

e Certify EdgeX components to ensure interoperability and compatibility.

e Provide tools to rapidly build EdgeX-based loT solutions that can easily adapt to changing
business needs.

e Collaborate with relevant open-source projects, standards groups and industry alliances to
ensure consistency and interoperability across the loT.

3.3 Edge Al

Edge Al refers to the use of artificial intelligence (Al) algorithms and models at the edge of a network,
closer to the source of data. This contrasts with traditional ML and Al approaches, which often involves
processing data in a centralized location, such as a data center or cloud. Edge Al is used in situations
where it is not feasible or practical to transmit large amounts of data to a central location for
processing. For example, it can be used by field devices, where data is generated by sensors. Edge Al
algorithms are designed to be lightweight and efficient, so they can run on devices with limited
processing power and memory. They can also be designed to operate in real-time, making them useful
in applications of autonomous systems and robots. The technology enables the development of
standalone intelligent digital twins that can operate in a decentralized manner and make decisions
based on local data.

3.3.1 Gstreamer

GStreamer is a free and open-source multimedia framework that enables the creation of a wide range
of media processing system with complex workflows [[18]]. It is written in C based on Glib and provides
a simple API for constructing processing pipelines combining a series of pluggable components which
can be connected to form a data flow from an input source to an output destination. These
components can be used to perform a wide range of operations such as encoding, filtering, multimedia
manipulation. It is being used for creating Al powered video analytics applications and services that

Project funded by Horizon Europe, Grant Agreement #101057083 19

ZEROSWARM

can be deployed on the edge and connected to cloud services. Intel (Deep Learning Streamer [[19]])
and Nvidia (DeepStream [[20]]) have recently integrated GStreamer into their deep learning inference
tools to provide developers with a flexible and powerful multimedia processing framework for deep
learning applications.

3.3.2 ONNX Runtime

ONNX (Open Neural Network Exchange) is an open format for representing machine learning models.
It was developed by Microsoft and is now maintained by the ONNX community [[21]]. ONNX provides
a standard way to represent deep learning models, making it easier to share and deploy models across
different platforms and applications. ONNX supports a wide range of neural network architectures,
including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. ONNX
also provides tools and libraries for converting models between different deep learning frameworks,
such as TensorFlow, PyTorch, and Keras. ONNX is used in a variety of applications, including image and
speech recognition, natural language processing, and computer vision.

ONNX Runtime is an open-source deep learning inference engine that enables the deployment of
ONNX models on a variety of devices and platforms. It was developed by Microsoft and is now
maintained by the ONNX community. ONNX Runtime provides an efficient and portable way to run
ONNX models, making it easy to deploy models on edge devices, such as loT devices and mobile phones,
as well as in the cloud. ONNX Runtime supports a wide range of hardware and software platforms,
including CPUs, GPUs, and specialized accelerators, such as Tensor Processing Units (TPUs).

3.3.3 NVIDIA TensorRT

NVIDIA TensorRT is an SDK for high-performance deep learning inference, includes a deep learning
inference optimizer and runtime that delivers low latency and high throughput for inference
applications. The SDK is free but is not open-source software [[22]]. We mention it here because it
provides best performance across many industries standard benchmark. TensorRT can optimize and
deploy applications to NVIDIA embedded system-on-chip solutions as Jetson family boards.

3.4 Discussion

Section 3.1 summarized the most relevant open tools for the creation of AAS: AASX server, Eclipse
BaSyx, NOVAAS and FA3ST, following the review work in [[23]]. All implementations support at least a
minimal set of required functionalities but none of them implement the full AAS specification. Most
solutions provide a complete ecosystem or platform, including services for modelling, repository of
AAS, registry discover functionalities, visualization tools. The implementation of AAS is still challenging
and there are incompatibilities among different implementations. The main reason is that AAS API
specification is still a work in progress and there is no final stable release, expected to change soon.

In addition, and more importantly, a common point that is not clearly or completely addressed by the
exiting AAS frameworks is the synchronization of the AAS with the asset. Synchronization here refers
to the integration layer in RAMI4.0. Although the integration layer is not cover by the AAS specification,
it is an essential feature of a digital twin, and usually work left to the system integrators. Besides, the
integration of Al embedded processing capabilities in the digital twins is not addressed properly by any
framework. BaSyx offers the possibility to address the synchronization task by custom coding using a
DataBridge component. NOVAAS uses Node-RED as a backend offering different connectors and the
possibility to customize some extending elements. FA3ST integrate a processing pipeline mechanism
using Apache StreamPipes but this is link as an external AAS service to enhance capabilities.

One approach to implement the integration layer and synchronize the AAS with the asset is to use an
existing open-source middleware. Among most suitable solutions identified: Kafka, Redis, Edge X
Foundry since they already provide several connectors and stream processors. However, their use for
data aggregation and Al processing from different sources in an embedded devices and providing e.g.,
OPC-UA interface in the northbound is not straightforward.

Project funded by Horizon Europe, Grant Agreement #101057083 20

ZEROSWARM

For the deployment of stream processing pipelines with Al capabilities in the edge, Gstreamer offers a
well-established open-source framework that has been recently integrated by big IT companies such
as NVIDIA and Intel who offer plugins based on ONNX and TensorRT for optimising Deep Learning
models for running in in embedded hardware solution combining CPU and GPU.

4 Open Toolkit for implementing AAS

The aim of this task is to provide a comprehensive methodology for developing reactive AAS (type)
of field devices and machines in the operation phase and open tools supporting this development.

More specifically, we aim two develop two main open tools:

. A novel AAS editor. A web-based editor aiming to simplify the modelling of the assets by
providing a library of templates.

. Edge computing framework to enable the implementation of digital twins with embedded
near real-time Al processing capabilities and AAS API (e.g., integrating an OPC-UA server).
The intention is to have standalone intelligent AAS that can run in the asset itself or in edge
devices close to the assets following the edge computing paradigm. The framework will
support developers to address the integration layer in RAMI4.0 (i.e., the synchronization
of the physical asset with the AAS) and the creation of complex processing pipelines with
Al capabilities in a simple way.

In Zero-Swarm the aim is not to create a new complete AAS platform or ecosystem. The idea is to
complement existing solutions by providing tools to support the development of other types of AAS
(e.g., edge AAS) with different functionalities. Ideally, once the AAS specification will be stable, all AAS
ecosystems should be compatible with each other.

4.1 AAS modelling tool

As reported in Section 3, there are available generic tools and libraries for AAS modelling, but there is
a lack of a tool able to support and guide a user to model the necessary information when it comes to
communication protocols (e.g., OPC UA). Some tools (i.e., AASx Package Explorer) have the possibility
to use some templates for the submodel definition, but using a non-friendly user interface as well as
the current version is not fully aligned with the standard IEC 63278 (definition of the structure of the
Assset Administration Shell); whereas another tools (i.e., Basyx) have more potential and flexibility,
but using command line.

Nowadays the AASx Package Explorer is one of the most known and powerful C# based viewer / editor
for Asset Administration Shell. This tool has the functionality of import and export submodels and the
complete AAS for different formats (i.e., Json, AutomationML and xml-based formats like OPC UA
Nodeset2.xml). Regarding the OPC UA information is possible to export part of the information needed
for the creation/configuration of an OPC UA server; but some information is missing (i.e., Namespaces,
Profiles, Facets). Currently, IDTA is working on a template (OPC UA Server Data Sheet 02009) that will
include information to find and access the OPC UA server and information about the content
implemented in the OPC UA server. But this submodel template is not available and will only allow the
definition of the information and not the export into the xml needed for the OPC UA server.

Taking into account the limitations found in the current frameworks, in Zero-Swarm AIMEN will
develop a user-friendly modeling tool for Asset Administration Shell, paying special attention of the
information needed for communication protocols definition (i.e., OPC UA Server).

The AAS toolkit will be a powerful and user-friendly web interface for modeling, and managing AAS,
allowing users to navigate and understand the structure and relationships of the digital twin easily.
This tool will comply with the latest AAS standards (IEC 63278) and it also will include validation

Project funded by Horizon Europe, Grant Agreement #101057083 21

ZEROSWARM

capabilities to ensure compliance with defined standards and constraints helping end-users to adopt
this technology as well as templates and guidelines for the users.

The main features/functionalities of this toolkit are:
e Web based application based on Angular framework.
e Create AAS digital twins of a manufacturing cell and physical resources using templates.

e Export the AAS and submodels into AASx, Json and xml format following the standards and
recommendations, compatible with the AASs generated with other frameworks.

e Templates for defining OPC UA server information. If the official template is available this will
be considered and available in the toolkit.

e Export nodeset2.xml and XXXX.xml, as configuration files for the generation of the OPC UA
server that can be later uploaded/used in an edge device.

e AASregistry and database.
4.2 Framework for developing edge digital twins with Al

The edge computing framework is an embedded framework that facilitates the development and
deployment of high-performance stream processing applications in edge devices providing
interoperability with 1loT. The core of the system has been developed by AIMEN in H2020 MULTIPLE
project (GA 871783) with the purpose of providing a common framework for developing embedded
vision applications.

The architecture of the framework is inspired by Gstreamer, combining a set of nodes (data sources,
data sinks, filters, and 1/0O modules) that can be connected to create complex processing pipelines.
Gstreamer was originally designed for developing audio/video multimedia applications where data
packet synchronization is a must. Therefore, Gstreamer has associated some overhead related to e.g.,
packet timestamp, synchronization, signalling mechanism, etc. that may harm the latency when
processing high dimensional data. This will depend on the memory management and the
implementation quality of some existing plugins that are usually difficult to decipher. Besides, the
learning curve for developing new plugins for Gstreamer is high, since it was implemented in C based
on Glib objects. The main aim of the new framework it to overcome some limitations of Gstreamer,
providing a fast, low latency and lightweight framework enabling the efficient processing of high
dimensional data exploiting two key points:

e Minimizing memory copies among nodes processors. Zero-copy processing.

e Maximizing use of sequential memory reads and writes (batch processing).
Other design principles and features are:

o Flow-based programming pattern.

e Low latency and efficiency.

e Programmed in C++.

e Compatible with Linux-based systems. Windows support under discussion.

e Concurrent programming exploiting e.g., multicore CPU and GPU.

e Signaling mechanism based on fast C++ delegates.

e Inference deep learning engines based on ONNX runtime, TensorRT.

e APl via embedded OPC-UA server enabling modification of settings online.

e Synchronized data acquisition and aggregation

Project funded by Horizon Europe, Grant Agreement #101057083 22

ZEROSWARM

e Easy configuration of the processing pipelines with YAML files.

Current implementation provides the following library of nodes supporting the connection of industrial
devices:

e Data source elements: GeniCam GigE/USB Cameras, Profilometers, Modbus.

e Data Sink elements: FileSink, RTSP, RestAPI, Display.

e Filters: Inference engine based on TensorRT, Inference engine for ONNX runtime.
e |/O modules: OPC-UA, TCP/ROS bridge, Profibus, Digital Analg and Digital I/O

Each node has settings, i.e., parameters and methods, that can be read/write and invoked online, and
gueues for data sharing. Each node can have several data queues, i.e., data objects for streaming data
managing concurrent access. The framework allows developers to easily implement additional custom
nodes in C++ using templates. Nodes can be connected through queues to create complex processing
pipelines. The pipeline can be instantiated and configure in code or using a simple yaml config file. The
compiled pipelines can be deployed in any Linux-based device with different computing capabilities. It
has been tested for instance in embedded devices using SoC form NVIDIA integrating ARM and GPU.

“Ull""ml i \
|l|| "i . S
e
aR,, 7.
&) -

Advantech
(Nvidia Xavier NX or AGX)

AAEON BOXER-8251Al Raspberry Pi4
(Nvidia Xavier NX)

Figure 12: Edge computing devices integrating Nvidia Jetson System-on-Chip with ARM/GPU and Raspberry Pi.

One key feature of the framework is the ability to create an embedded lightweight OPC-UA server
using the open-source OPC-UA stack Open62541. This server node can expose all the settings of each
node in the pipeline and the data streamed in the queues through an OPC-UA interface.

Next figure shows a very simple example of a processing pipeline for implementing a machine vision
system. The pipeline is composed by three elements: Camera Node (for interfacing the camera through
GigE), Display (local GUI for visualising the video stream), and FileSink (local storage of the data stream).
The OPC-UA node implements an embedded server that enables the control of each element in the
pipeline remotely and streaming of images as 2D arrays. Next figure shows the scheme of the pipeline
configuration. The black arrows indicate data streaming, blue arrows events used for node settings
control and monitoring. The Q indicates a queue object handling concurrent access to the resources.
Figure 14: UAExpert GUI showing OPC-UA server structure of the edge computing pipeline from Figure
13.Figure 14 shows the OPC-UA server structure inspected with a third party OPC-UA client (UAExpert).

Physical Asset Edge processing pipeline

Display
Machine Camera
Vision
Camera Data Sink

OPC-UA Server

Figure 13: Simple example of a processing pipeline with OPC-UA embedded interface

Project funded by Horizon Europe, Grant Agreement #101057083 23

ZEROSWARM

File View Server Document Settings

P BPBPO ¢
Project @&
=- 3 Project

= [Servers

¥ open62541-based OPC UA Applicat]
= @ Documents

[3 Data Access View

[«])

Address Space @ ®

3 | No Highlight &l

I Root
=12 Objects

#- 1) Commands

+-I) Queues
+ % Server
=1-I2) Settings
- ¢ Display
- ¢% Photonfocus

AcquisitionFrameRateEnable
ExposureTime
Height
PixelFormat
Width
arv_num_buffers
camera_name
push mode

[+ status
#- ¢ Sink
+- 12 Types
+-2) Views

&5 -5

coccpcman

Help
~ o
X N ‘Lﬁ E;J
Data Access View © Attributes @®
Server Node Id Display Name| 3 |7 E:tk ®) (+)
Attribute Value
=l Nodeld i=53920 []
Namespacelndex 0
IdentifierType Numeric
Identifier 53920 (]
NodeClass Variable
BrowseName 1, "AcquisitionFr;
DisplayName "en-US", "Acquis
Description FeEbnT A
P Only available if
WriteMask 0
UserWriteMask 0
BadAttributeldir
= Value
SourceTimestamp 14/06/21 14:47:¢
SourcePicoseconds 0
ServerTimestamp 14/06/21 14:47:«
ServerPicoseconds 0
StatusCode Good (0x000000
Value 3.3228182'*327
[} DataType Double
Namespacelndex 0
IdentifierType Numeric
Identifier 11 [Double]
ValueRank -2 (Any)
ArrayDimensions UInt32 Array[-1]
AccessLevel CurrentRead, Cu
UserAccessLevel CurrentRead, Cu
Minimu}nSarﬁplinglntewal 0
Historizing false
(] | [»]
References @ ®
Q‘\yfl;l-.l@lll:orward | (+]
Reference Target DisplayName
HasTypeDefin... BaseDataVariableType
‘.‘i == [>

Figure 14: UAExpert GUI showing OPC-UA server structure of the edge computing pipeline from Figure 13.

The purpose in ZeroSwarm is to release the Edge Computing Framework as an open-source stable
repository for AAS implementation. This requires addressing the following challenges:

e Refactoring of the framework adding new core functionalities. The refactoring will affect
the complete framework simplifying the core classes, current nodes, and improving the
singling mechanism via events. Tasks related to the development of good documentation,
improve styling and port the build system to CMAKE are ongoing. The aim is to deliver a
easy to use and comprehensive solution.

e Integration of given Information models and AAS APl with an embedded OPC-UA server.
The main challenge to address in ZeroSwarm is to map the current OPC-UA server
structure with setting and data from queues as shown in Figure 14 to a given information
model following AAS or OPC-UA. The aim is to provide an easy solution for doing this
mapping / binding of data, properties and settings without the need of writing much code.

The foresee structure of the edge AAS implemented with Edge Computing Framework pipelines is

showed in the next figure:

Project funded by Horizon Europe, Grant Agreement #101057083

24

ZEROSWARM

AAS | API(OPCUA, HTTP) |

Properties | | Operations | | Events
A A A

A

Edge computing pipeline 4

A 4

Asset

Figure 15: AAS proposed structure.

The edge computing pipeline will be responsible for synchronising the Asset with the AAS properties,
operations, events, and provide near real-time processing capabilities. Besides, it facilitates the
integration of an OPC-UA server embedded within the AAS implementing the API specification. The
implementation of an additional APl based on HTTP is under discussion. The structure is similar to the
one proposed by other open-source frameworks like FA3ST [[23], [24][or [[25]]. The main difference is
the edge computing pipeline, which is embedded in the AAS and not linked as an external service
outside the AAS as in FAAST, and the functionalities it provides such as online settings modification,
bidirectional communication, Al inference in the edge.

4.3 AAS implementation workflow

For the realization of an edge AAS, these are the foreseen steps:

1.

Create the AAS model, considering the standardized metamodel, and following these phases
of modelling.

1.1: identify the asset and study its information (i.e., checking the available technical
datasheets).

1.2: define the structure using the AAS metamodel. This includes the division of the
information into submodels.

Following the recommendations in [[8]], we should avoid double modelling and double
standardization. Therefore, the first thing is to check with the domain experts if there are
existing information models already available for our devices and application (e.g., OPC-UA
companion specifications by VDMA, IDTA templates, AutomationML). If there are no
information models that satisfy our requirements, we can start the development of a new
template of a specific submodel using the web-based AAS editor or the AASx Package Explorer.

1.3: define the communication of the AAS with the external elements. This step includes the
identification of the interesting data that can be sent from the edge device to a
cloud/server/repository.

1.4: Serialization of the model in Nodeset2 XML. The toolkit will provide the functionality of
export the AAS model into a Nodeset2 XML format, so this step will be a transparent to the
user of the toolkit.

Development of the AAS instance.

Project funded by Horizon Europe, Grant Agreement #101057083 25

) ZEROSWARM

2.1 Transform the Nodeset2 XML into datafiles needed by the Open62541 stack to create the
OPC-UA server instance providing .c/h files. For the transformation there are available
tools from OPC foundation such as UA_Compiler.

-Csv

Asset Administration Model Desing.xml/ UA_Compiler

Shell Nodeset2.xm| (.NET required) Nodeset2.xm| open62541

.bsd

2.2. In parallel, create the processing pipeline using the Edge Computing Framework to
interface the devices and external elements following 1.3 and implement the required data
aggregation and processing functionalities.

2.3. Bind the properties and operations of the metamodel in the OPC-UA server with the data
and settings of the pipeline elements. Most probably this step will require the modification of
a config file. Recompile to generate the final executable.

3. Deployment of the AAS in the edge devices and verification.

5 AAS implementation examples

The development of an AAS of a metal additive manufacturing (AM) cell in the south node trial 3 (SNO3)
-5G enabled remote quality control for zero defect resilient manufacturing- has been taken as a
reference use case to start the discussion and define the requirements for the ASS toolkit.

Figure 16: Robotized Additive Manufacturing Cell

A robotized metal AM cell additive manufacturing cell is a manufacturing system that uses laser
technology to deposit metal powder onto a substrate, layer by layer, to create a three-dimensional
component. The robot handles the substrate and controls the movement of the laser. This allows for
precise and automated manufacturing of parts with complex geometries. AIMEN is working on
centralizing manufacturing data from their current Additive Manufacturing cells into a centralized

Project funded by Horizon Europe, Grant Agreement #101057083 26

ZEROSWARM

cloud platform. Data in the past was captured in a device inside the cell locally in files, and then these
files were transferred manually by cell operators to a centralized folder. AIMEN aims to connect several
of these Additive Manufacturing cells to the cloud via 5G so they become monolithic portable
manufacturing cells that can be easily moved inside a factory (movable with crane) or field (movable
inside a container). The cells typically include a laser system, a powder delivery system, an industrial
robot, and a machine vision system (camera+ industrial pc) to monitor the melt pool during the entire
process.

The goal is to develop an AAS for monitoring the AM cell. Ideally the AAS would be hosted in an edge
device in the Cell with 5G connectivity. Several possibilities for modelling the cell and implementing
the AAS are being evaluated.

First option is to create a unique AAS model of the complete AM cell including only the relevant

monitoring data. Some operational data of interest are the robot position and orientation, laser power,

images and melt pool width (feature extracted from the camera with an Al model). Figure 17 and

Figure 18 show a possible implementation of the AAS using the edge computing framework, and
Additive

manufacturing cell

° AAS instance implemented using an edge computing pipeline
(physical assets)

Machine Gigk

Vision T — > Camera n—. Pre-processingn—P Al Inference

Camera
TCP/IP TCP/IP a > ileSi
4 » Socket | FileSink
Analog

. PR > Analog I/O n<

v Y

AAS API (OPC-UA Server)

Figure 17: Example of a processing pipeline for implementing an AAS of the complete Additive Manufacturing Cell.

— AAS AM cell
Edge devices (OPC-UA AAS API)
|l"
Processing pipeline
GigkE Analog I TCP/IP

) A Machine
Field devices e Laser Robot
Sensors, actuators Camera

Figure 18: AAS instance of the AM cell with embedded OPC-UA server API

Another option is to create two embedded OPC-UA servers, one for the Robot and one for the Machine
Vision System following existing OPC-UA information models defined by VDMA [[26], [27]]. Then an
AAS for the complete cell on top of them including submodules referencing the OPC-UA information
models. The OPC-UA severs would run in an edge device while the AAS instance would be hosted on a
server.

Project funded by Horizon Europe, Grant Agreement #101057083 27

ZEROSWARM

Centralised data center AAS AM cell
(HTTP or OPC-UA API)

OPC-UA Server

OPC-UA Server

Edge devices (Machine Vision ’
VDMA 40100-2:2022-11) {Robotics VDMA 40010-1)

1
llhu»“m”l _ o
Processing pipeline Processing pipeline
Field devices Machine
sensors, actuators Vision Laser
Camera

Figure 19: AAS instance of the AM cell on a server (e.g., private cloud) referencing by submodels two OPC-UA embedded
servers on edge devices.

One requirement in both cases, is that the OPC-UA server that controls the camera should be able to
deploy Al models for online analysis of the video stream. The aim is to extract the image features from
the camera, e.g., the melt pool width, and send them to the cloud together with other process
parameters (robot positions, laser power). In addition, the AAS should provide a common interface
independently of the robot brand that is used in the cell. The intention is to implement both
approaches. We are starting with option 1 since is simpler. Once this is operative, we will proceed with
option two.

6 Conclusion

We have reviewed the challenges related to the implementation of Digital Twins based on Asset
Administration Shell specification for Industry 4.0, and the features and limitations of most important
AAS open-source frameworks that allow developers to work with AAS.

Zero-SWARM aims to deliver a comprehensive methodology and novel open-source software for
supporting the implementation of reactive AAS (type Il) of field devices and machines during the
operation phase with embedded Al processing capabilities. These AAS could be deployed in the assets
itself or in edge devices close to the machines following the edge computing paradigm. This would
enable the implementation of decentralized applications such as distributed control or autonomous
system.

Two software tools are being developed in this task and will be published as open-source repositories:

e An AAS web-based modelling tool following the latest AAS specification that will simplify
the modelling task using pre-defined templates.

¢ Anedge computing framework that will facilitate the synchronization of the asset with the
AAS APl embedding an OPC-UA server. This framework enables the creation of flexible and
modular processing pipelines combining data sources, filters and sinks modules and can
be applied for embedded data aggregation and processing.

An overall workflow for the implementation of new AAS and examples will be provided as templates
to support the implementation of AAS in the trials of the project. The final outcomes will be reported
in an updated version of this deliverable.

Project funded by Horizon Europe, Grant Agreement #101057083 28

ZEROSWARM

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9l

(10]
(11]

(12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]
(20]
[21]
(22]
(23]

[24]

[25]

[26]
(27]

Boss, B. et al. (2020). Digital Twin and Asset Administration Shell Concepts and Application in the Industrial
Internet and Industrie 4.0. An Industrial Internet Consortium and Plattform Industrie 4.0 Joint Whitepaper.

Martikkala, A. et al. (2021). Trends for Low-Cost and Open-Source IoT Solutions Development for Industry
4.0. Procedia Manuf. 2021, 55, 298-305.

Plattform Industrie 4.0. Structure of the Administration Shell, continuation of the development of the
reference model for the Industrie 4.0 component. Working Paper, April 2016.

Plattform Industrie 4.0. Details of the Asset Administration Shell—Part 1 The Exchange of Information
between Partners in the Value Chain of Industrie 4.0. (Version 3.0RC01).

Plattform Industrie 4.0. Details of the Asset Administration Shell Part 2—Interoperability at Runtime—Part
2—Interoperability at Runtime—Exchanging Information via Application Programming Interfaces: (Version
1.0RCO01). 2020.

IEC 63278-1:2023 PRV (Prerelease version). Asset Administration Shell for industrial applications — Part 1:
Asset Administration Shell structure.

Jacoby, M. et al. (2020). Digital Twin and Internet of Things—Current Standards Landscape. Applied
Sciences 10, no. 18: 6519.

Darth, R. et al. (2023) Discussion paper — Interoperability with the Administration Shell, OPC-UA and
AutomationML. Target image and recommendations for actions for industrial interoperability. Discussion
paper 2023 — Discussion paper 2023 — AutomationML.

https://www.automationml.org/wp-content/uploads/2021/07/PosPapier Interrelation-of-AAS-and-
AML.pdf

Bitkome, V. (2021). Open-Source Monitor — Survey Report 2021.
https://github.com/admin-shell-io/aasx-server

https://gitlab.com/novaas/catalog/nova-school-of-science-and-technology/novaas

https://www.eclipse.org/basyx/

https://github.com/FraunhoferlOSB/FAAAST-Service

https://kafka.apache.org/documentation/

Error! Hyperlink reference not valid.https://github.com/RedisGears/EdgeRealtimeVideoAnalytics

https://docs.edgexfoundry.org/2.3/

https://gstreamer.freedesktop.org/

https://dlstreamer.github.io/

https://developer.nvidia.com/deepstream-sdk

https://onnx.ai

https://github.com/NVIDIA/TensorRT

Jacoby, M. et al. (2023). Open-Source Implementations of the Reactive Asset Administration Shell: A Survey.
Sensors. 23. 5229.

Jacoby, M. et al. (2021). An Approach for Realizing Hybrid Digital Twins Using Asset Administration Shells
and Apache StreamPipes. information (Switzerland). 12. 10.3390/info12060217.

Pribis, R. et al. (2021). Asset administration shell design methodology using embedded OPC unified
architecture server. Electronics (Switzerland), 10(20).

https://www.vdma.org/viewer/-/v2article/render/67592778

https://reference.opcfoundation.org/Robotics/v100/docs/

Project funded by Horizon Europe, Grant Agreement #101057083 29

https://www.automationml.org/about-automationml/publications/discussionpaper-2023/
https://www.automationml.org/wp-content/uploads/2021/07/PosPapier_Interrelation-of-AAS-and-AML.pdf
https://www.automationml.org/wp-content/uploads/2021/07/PosPapier_Interrelation-of-AAS-and-AML.pdf
https://github.com/admin-shell-io/aasx-server
https://gitlab.com/novaas/catalog/nova-school-of-science-and-technology/novaas
https://www.eclipse.org/basyx/
https://github.com/FraunhoferIOSB/FAAAST-Service
https://kafka.apache.org/documentation/
https://github.com/RedisGears/EdgeRealtimeVideoAnalytics
https://docs.edgexfoundry.org/2.3/
https://gstreamer.freedesktop.org/
https://dlstreamer.github.io/
https://developer.nvidia.com/deepstream-sdk
https://onnx.ai/
https://github.com/NVIDIA/TensorRT
https://www.vdma.org/viewer/-/v2article/render/67592778
https://reference.opcfoundation.org/Robotics/v100/docs/

